首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli and many other Gram-negative pathogenic bacteria protect themselves from the toxic effects of electrophilic compounds by using a potassium efflux system (Kef). Potassium efflux is coupled to the influx of protons, which lowers the internal pH and results in immediate protection. The activity of the Kef system is subject to complex regulation by glutathione and its S conjugates. Full activation of KefC requires a soluble ancillary protein, KefF. This protein has structural similarities to oxidoreductases, including human quinone reductases 1 and 2. Here, we show that KefF has enzymatic activity as an oxidoreductase, in addition to its role as the KefC activator. It accepts NADH and NADPH as electron donors and quinones and ferricyanide (in addition to other compounds) as acceptors. However, typical electrophilic activators of the Kef system, e.g., N-ethyl maleimide, are not substrates. If the enzymatic activity is disrupted by site-directed mutagenesis while retaining structural integrity, KefF is still able to activate the Kef system, showing that the role as an activator is independent of the enzyme activity. Potassium efflux assays show that electrophilic quinones are able to activate the Kef system by forming S conjugates with glutathione. Therefore, it appears that the enzymatic activity of KefF diminishes the redox toxicity of quinones, in parallel with the protection afforded by activation of the Kef system.  相似文献   

2.
Page RC  Pruneda JN  Amick J  Klevit RE  Misra S 《Biochemistry》2012,51(20):4175-4187
Post-translational modification of proteins by ubiquitin (Ub) regulates a host of cellular processes, including protein quality control, DNA repair, endocytosis, and cellular signaling. In the ubiquitination cascade, a thioester-linked conjugate between the C-terminus of Ub and the active site cysteine of a ubiquitin-conjugating enzyme (E2) is formed. The E2~Ub conjugate interacts with a ubiquitin ligase (E3) to transfer Ub to a lysine residue on a target protein. The flexibly linked E2~Ub conjugates have been shown to form a range of structures in solution. In addition, select E2~Ub conjugates oligomerize through a noncovalent "backside" interaction between Ub and E2 components of different conjugates. Additional studies are needed to bridge the gap between the dynamic monomeric conjugates, E2~Ub oligomers, and the mechanisms of ubiquitination. We present a new 2.35 ? crystal structure of an oligomeric UbcH5c~Ub conjugate. The conjugate forms a staggered linear oligomer that differs substantially from the "infinite spiral" helical arrangement of the only previously reported structure of an oligomeric conjugate. Our structure also differs in intraconjugate conformation from other structurally characterized conjugates. Despite these differences, we find that the backside interaction mode is conserved in different conjugate oligomers and is independent of intraconjugate relative E2-Ub orientations. We delineate a common intraconjugate E2-binding surface on Ub. In addition, we demonstrate that an E3 CHIP (carboxyl terminus of Hsp70 interacting protein) interacts directly with UbcH5c~Ub oligomers, not only with conjugate monomers. These results provide insights into the conformational diversity of E2~Ub conjugates and conjugate oligomers, and into their compatibility and interactions with E3s, which have important consequences for the ubiquitination process.  相似文献   

3.
Rapid synthesis of DNA-cysteine conjugates for expressed protein ligation   总被引:1,自引:0,他引:1  
We report a rapid method for the covalent modification of commercially available amino-modified DNA oligonucleotides with a cysteine moiety. The resulting DNA-cysteine conjugates are versatile reagents for the efficient preparation of covalent DNA-protein conjugates by means of expressed protein ligation (EPL). The EPL method allows for the site-specific coupling of cysteine-modified DNA oligomers with recombinant intein-fusion proteins, the latter of which contain a C-terminal thioester enabling the mild and highly specific reaction with N-terminal cysteine compounds. We prepared a cysteine-modifier reagent in a single-step reaction which allows for the rapid and near quantitative synthesis of cysteine-DNA conjugates. The latter were ligated with the green fluorescent protein mutant EYFP, recombinantly expressed as an intein-fusion protein, allowing for the mild and selective formation of EYFP-DNA conjugates in high yields of about 60%. We anticipate many applications of our approach, ranging from protein microarrays to the arising field of nanobiotechnology.  相似文献   

4.
Semisynthetic DNA-protein conjugates are versatile tools for many applications in bioanalytics and nanobiotechnology. We here report a method based on expressed protein ligation (EPL) for the site-specific coupling of cysteine-modified DNA oligomers with recombinant intein-fusion proteins. The latter contain a C-terminal thioester, enabling the mild and highly specific reaction with N-terminal cysteine compounds. To conveniently couple commercially available DNA oligomers with cysteine groups a universal chemical modifier was developed, containing a protected cysteine and an amino-reactive N-hydroxysuccinimide group connected by a hexaethyleneglycol moiety. Using maltose-binding protein (MBP) and green fluorescent protein mutant EYFP as a model systems, we demonstrate the feasibility of this approach, as well as the integrity and functionality of the DNA-protein conjugates synthesized. We anticipate that our concept will enable many applications, such as the generation of large arrays of surface-bound, recombinant proteins assembled by means of DNA-directed immobilization.  相似文献   

5.
Engineering the permanent formation of a receptor-ligand complex has a number of potential applications in chemistry and biology, including targeted medical imaging and therapy. Starting from the crystal structure of the rare-earth-DOTA binding antibody 2D12.5 (Corneillie, T. M., Fisher, A. J., and Meares, C. F. (2003) J. Am. Chem. Soc. 125, 15039-15048), we used the site-directed incorporation of cysteine nucleophiles at the periphery of the antibody's binding site, paired with the chemical design of a weakly electrophilic ligand, to produce a receptor-ligand pair that associates efficiently and permanently. Protein residues proximal to the ligand's side chain were identified for engineering cysteine mutants. Fab fragments incorporating a cysteine at position 54, 55, or 56 of the heavy chain (complementarity determining region 2) were designed from the structure and then cloned, expressed in Drosophila S2 cells, and tested for reactivity with mildly electrophilic DOTA-yttrium ligands. All showed permanent binding activity, indicating that there is some tolerance for the location of the reactive mutant on the protein surface near the binding site. The G54C Fab mutant displayed the highest expression levels and permanent binding activity in initial experiments and was produced in high yield for further study. Upon examining the behavior of the G54C mutant with a small set of electrophilic ligands, differences in reactivity were observed which indicated that the substituents near the electrophilic atom can be important determinants of permanent binding. The G54C mutant permanently attaches to Y(3+) complexes of (S)-2-(4-acrylamidobenzyl)-DOTA with a half-time of approximately 13 min at 37 degrees C, making it potentially useful for in vivo pretargeting applications.  相似文献   

6.
Targeting noncatalytic cysteine residues with irreversible acrylamide-based inhibitors is a powerful approach for enhancing pharmacological potency and selectivity. Nevertheless, concerns about off-target modification motivate the development of reversible cysteine-targeting strategies. Here we show that electron-deficient olefins, including acrylamides, can be tuned to react with cysteine thiols in a rapidly reversible manner. Installation of a nitrile group increased the olefins' intrinsic reactivity, but, paradoxically, eliminated the formation of irreversible adducts. Incorporation of these electrophiles into a noncovalent kinase-recognition scaffold produced slowly dissociating, covalent inhibitors of the p90 ribosomal protein S6 kinase RSK2. A cocrystal structure revealed specific noncovalent interactions that stabilize the complex by positioning the electrophilic carbon near the targeted cysteine. Disruption of these interactions by protein unfolding or proteolysis promoted instantaneous cleavage of the covalent bond. Our results establish a chemistry-based framework for engineering sustained covalent inhibition without accumulating permanently modified proteins and peptides.  相似文献   

7.
8.
Selenocysteine (Sec; U in one-letter code) is the twenty-first naturally occurring amino acid, with a selenium atom that gives this cysteine (Cys) homolog unique biochemical properties, including a high nucleophilicity and significant reactivity with electrophilic agents. This can be used in biotechnological Sec-dependent applications. Here, we describe how Sec can be introduced into a carboxy-terminal tetrapeptide motif (-Gly-Cys-Sec-Gly-COOH, known as a Sel-tag) for recombinant proteins by tailoring the encoding gene to become compatible with the Escherichia coli selenoprotein synthesis machinery. We also describe how the Sel-tag can be used as a basis for efficient one-step protein purification, rapid Sec-targeting protein labeling with electrophilic compounds, or radiolabeling with the positron emitter 11C.  相似文献   

9.
A solid-phase conjugation method utilizing carrier protein bound to an ion exchange matrix was developed. Ovalbumin was adsorbed to an anion exchange matrix using a batch procedure, and the immobilized protein was then derivatized with iodoacetic acid N-hydroxysuccinimid ester. The activated protein was conjugated with glutathione, the conjugation ratio determined by acid hydrolysis, and amino acid analysis performed with quantification of carboxymethyl cysteine. Elution of conjugates from the resin by a salt gradient revealed considerable heterogeneity in the degree of derivatization, and immunization experiments with the eluted conjugates showed that the more substituted conjugates gave rise to the highest titers of glutathione antibodies. Direct immunization with the conjugates adsorbed to the ion exchange matrix was possible and gave rise to high titers of glutathione antibodies. Conjugates of ovalbumin and various peptides were prepared in a similar manner and used for production of peptide antisera by direct immunization with the conjugates bound to the ion exchanger. Advantages of the method are its solid-phase nature, allowing fast and efficient reactions and intermediate washings, and the ability to release conjugates from the solid phase under mild conditions.  相似文献   

10.
11.
To determine the role of cysteine conjugate beta-lyase (beta-lyase) in the metabolism of mutagenic nitropolycyclic aromatic hydrocarbons, we determined the effect of beta-lyase on the mutagenicities and DNA binding of cysteine conjugates of 4,5-epoxy-4,5-dihydro-1-nitropyrene (1-NP 4,5-oxide) and 9,10-epoxy-9,10-dihydro-1-nitropyrene (1-NP 9,10-oxide), which are detoxified metabolites of the mutagenic compound 1-nitropyrene. We purified beta-lyase from Peptostreptococcus magnus GAI0663, since P. magnus is one of the constituents of the intestinal microflora and exhibits high levels of degrading activity with cysteine conjugates of 1-nitropyrene oxides (1-NP oxide-Cys). The activity of purified beta-lyase was optimal at pH 7.5 to 8.0, was completely inhibited by aminooxyacetic acid and hydroxylamine, and was eliminated by heating the enzyme at 55 degrees C for 5 min. The molecular weight of beta-lyase was 150,000, as determined by fast protein liquid chromatography. S-Arylcysteine conjugates were good substrates for this enzyme. As determined by the Salmonella mutagenicity test, 5 ng of beta-lyase protein increased the mutagenicity of the cysteine conjugate of 1-NP 9,10-oxide (10 nmol per plate) 4.5-fold in Salmonella typhimurium TA98 and 4.1-fold in strain TA100. However, beta-lyase had little effect on the cysteine conjugate of 1-NP 4,5-oxide (10 nmol per plate). Both conjugates exhibited only low levels of mutagenicity with nitroreductase-deficient strain TA98NR. In vitro binding of 1-NP oxide-Cys to calf thymus DNA was increased by adding purified beta-lyase or xanthine oxidase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
Engineering the permanent formation of a receptor-ligand complex has a number of promising applications in chemistry, biology, and medicine. Antibodies and other proteins can be excellent receptors for synthetic ligands such as probes or drugs. Because proteins possess an array of nucleophilic sites, the placement of an electrophile on the synthetic ligand to react with a nucleophile on the macromolecule is a standard practice. Previously, we have used the site-directed incorporation of cysteine nucleophiles at the periphery of an antibody's binding site, paired with the chemical design of weakly electrophilic ligands, to produce receptor-ligand pairs that conjugate specifically and permanently (Corneillie et al. (2004) Bioconjugate Chem. 15, 1392-1402 and references therein). After protein expression in Drosophila S2 cells, we found, as is frequently observed, that the engineered cysteine was reversibly blocked by disulfide linkage to a cysteine monomer (cysteinylated). Removal of the cysteine monomer requires some care because of the need to preserve other disulfide linkages in the protein. Here, we report that cysteinylation can be used to advantage by treating the cysteine monomer as a leaving group and the protein disulfide as an electrophile with special affinity for thiols. Two ligands bearing thiol side chains were synthesized and incubated with the cysteinylated antibody Fab fragment 2D12.5 G54C, with the finding that both ligands become covalently attached within a few minutes under physiological conditions. The attachment is robust even in the presence of excess thiol reagents. This rapid, specific conjugation is particularly interesting for biomedical applications.  相似文献   

14.
15.
The process of lipid peroxidation is widespread in biology and is mediated through both enzymatic and non-enzymatic pathways. A significant proportion of the oxidized lipid products are electrophilic in nature, the RLS (reactive lipid species), and react with cellular nucleophiles such as the amino acids cysteine, lysine and histidine. Cell signalling by electrophiles appears to be limited to the modification of cysteine residues in proteins, whereas non-specific toxic effects involve modification of other nucleophiles. RLS have been found to participate in several physiological pathways including resolution of inflammation, cell death and induction of cellular antioxidants through the modification of specific signalling proteins. The covalent modification of proteins endows some unique features to this signalling mechanism which we have termed the 'covalent advantage'. For example, covalent modification of signalling proteins allows for the accumulation of a signal over time. The activation of cell signalling pathways by electrophiles is hierarchical and depends on a complex interaction of factors such as the intrinsic chemical reactivity of the electrophile, the intracellular domain to which it is exposed and steric factors. This introduces the concept of electrophilic signalling domains in which the production of the lipid electrophile is in close proximity to the thiol-containing signalling protein. In addition, we propose that the role of glutathione and associated enzymes is to insulate the signalling domain from uncontrolled electrophilic stress. The persistence of the signal is in turn regulated by the proteasomal pathway which may itself be subject to redox regulation by RLS. Cell death mediated by RLS is associated with bioenergetic dysfunction, and the damaged proteins are probably removed by the lysosome-autophagy pathway.  相似文献   

16.
The Keap1-Nrf2 system is the major regulatory pathway of cytoprotective gene expression against oxidative and/or electrophilic stresses. Keap1 acts as a stress sensor protein in this system. While Keap1 constitutively suppresses Nrf2 activity under unstressed conditions, oxidants or electrophiles provoke the repression of Keap1 activity, inducing the Nrf2 activation. However, the precise molecular mechanisms behind the liberation of Nrf2 from Keap1 repression in the presence of stress remain to be elucidated. We hypothesized that oxidative and electrophilic stresses induce the nuclear accumulation of Nrf2 by affecting the Keap1-mediated rapid turnover of Nrf2, since such accumulation was diminished by the protein synthesis inhibitor cycloheximide. While both the Cys273 and Cys288 residues of Keap1 are required for suppressing Nrf2 nuclear accumulation, treatment of cells with electrophiles or mutation of these cysteine residues to alanine did not affect the association of Keap1 with Nrf2 either in vivo or in vitro. Rather, these treatments impaired the Keap1-mediated proteasomal degradation of Nrf2. These results support the contention that Nrf2 protein synthesized de novo after exposure to stress accumulates in the nucleus by bypassing the Keap1 gate and that the sensory mechanism of oxidative and electrophilic stresses is closely linked to the degradation mechanism of Nrf2.  相似文献   

17.
Various types of ADP-ribosyl protein conjugates were synthesized and their chemical stability was compared with that of cysteine-linked ADP-ribosyl groups as formed by incubation of transducin or Gi/Go proteins with NAD and pertussis toxin. Treatment with 0.1 mM HgCl2 specifically cleaved the cysteine-linked conjugates. This may provide a tool for the quantitation of modified Gi/Go proteins as well as of other acceptors modified by ADP-ribose at cysteine residues in the presence of other ADP-ribosyl proteins.  相似文献   

18.
Synthetic cysteine-containing peptides were unidirectionally conjugated to albumin via disulfide bonds using the S-(3-nitro-2-pyridinesulfenyl) derivative of cysteine. This method employs the N-hydroxysuccinimide ester of Boc-[S-(3-nitro-2-pyridinesulfenyl)]-cysteine, a protected amino acid derivative used in peptide synthesis, as a heterobifunctional cross-linking agent. The disulfide bonds in the conjugates are formed by the reaction of free thiols with S-(3-nitro-2-pyridinesulfenyl) groups. Bovine albumin was conjugated in this manner to several synthetic peptides derived from human fibrin. Amino acid analysis of these conjugates demonstrated incorporations of from 6 to 11 peptide molecules per molecule of protein.  相似文献   

19.
Redox regulation of protein tyrosine phosphatase 1B (PTP1B) involves oxidative conversion of the active site cysteine thiolate into an electrophilic sulfenyl amide residue. Reduction of the sulfenyl amide by biological thiols regenerates the native cysteine residue. Here we explored fundamental chemical reactions that may enable covalent capture of the sulfenyl amide residue in oxidized PTP1B. Various sulfone-containing carbon acids were found to react readily with a model peptide sulfenyl amide via attack of the sulfonyl carbanion on the electrophilic sulfur center in the sulfenyl amide. Both the products and the rates of these reactions were characterized. The results suggest that capture of a peptide sulfenyl amide residue by sulfone-stabilized carbanions can slow, but not completely prevent, thiol-mediated generation of the corresponding cysteine-containing peptide. Sulfone-containing carbon acids may be useful components in the construction of agents that knock down PTP1B activity in cells via transient covalent capture of the sulfenyl amide oxoform generated during insulin signaling processes.  相似文献   

20.
Nephrotoxic cysteine conjugates kill cells after they are metabolized by the enzyme cysteine conjugate beta-lyase to reactive fragments which bind to cellular macromolecules. We have investigated the cellular events which occur after the binding and lead ultimately to cell death in renal epithelial cells. Using S-(1,2-dichlorovinyl)-L-cysteine (DCVC) as a model conjugate, we found that the phenolic antioxidants N,N'-diphenyl-p-phenylenediamine (DPPD), butylated hydroxyanisole, butylated hydroxytoluene, propyl galate, and butylated hydroxyquinone, and the iron chelator deferoxamine inhibited the cytotoxicity significantly. Among the five antioxidants, DPPD was most potent. DPPD blocked DCVC toxicity over an extended time period, and the rescued cells remained functional as measured by protein synthetic activity. DPPD was able to block the toxicity of two other toxic cysteine conjugates S-(2-chloro-1,1,2-trifluoroethyl)-L-cysteine and S-(1,1,2,2-tetrafluoroethyl)-L-cysteine. In addition to LLC-PK1 cells, DPPD also protected freshly isolated rat kidney epithelial cells in suspension and in primary culture. In suspension cells, DPPD was effective at low doses of DCVC (25-50 microM) but not at high concentrations (250-500 microM). DPPD inhibition was not due to an inactivation of beta-lyase or a decrease in the binding of [35S]DCVC metabolites to cellular macromolecules and occurred at a step after the activation of the toxins. During DCVC treatment, lipid peroxidation products were detectable prior to cell death. DPPD blocked lipid peroxidation over the whole time course. Depletion of nonprotein thiols also occurred prior to cell death. DPPD did not prevent the loss of nonprotein thiols. However, the sulfhydryl-reducing agent DTT blocked lipid peroxidation and toxicity at a step after the activation of DCVC. Therefore, it appears that cysteine conjugates kill renal epithelial cells by a combination of covalent binding, depletion of nonprotein thiols, and lipid peroxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号