首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Retinoid X receptors (RXRs) function as homo- or heterodimers with other nuclear receptors, such as peroxisome proliferator-activated receptors (PPARs), which are targets for treatment of hyperlipidemia and type 2 diabetes, or liver X receptors (LXRs), which are involved in glucose/lipid metabolism. PPAR/RXR or LXR/RXR are known as permissive RXR-heterodimers because they are activated by RXR agonists alone. Interestingly, the pattern of RXR-heterodimer activation is different depending on the RXR agonist structure, but the structure–activity relationship has not been reported. Here we show that modification or replacement of the carboxyl group in the acidic domain of RXR agonists has little or no effect on permissive RXR-heterodimer activation. Phosphonic acid (9), tetrazole (10), and hydroxamic acid (12) analogues were synthesized from the common bromo intermediate 7. Except for 9, these compounds showed RXR full-agonistic activities in the concentration range of 1–10 μM. The order of agonistic activity toward both PPARγ/RXRα and LXRα/RXRα was the same as it was for RXR, that is, 11 > 10 > 12. These results should be useful for the development of RXR agonists with improved bioavailability.  相似文献   

3.
Liver X receptors (LXRs) are involved in cholesterol homeostasis and lipid metabolism.Ixr knock-out mice for the two isoformsIxra andIxrb exhibit severe disruption of the structure of caput epididymidis segment 1 and 2 epithelium and increased sperm fragility. These defects generate infertility in 10-month-old male mice. The role of LXRs in the epididymis have not yet been investigated. A cell line obtained from mouse caput epididymidis (B2 cells) was used to screen for LXR epididymal target genesin vitro. The presence of one isoform of LXR (LXRα) was detected by immunocytochemistry and the capacity of B2 cells to respond to a synthetic agonist of LXRs (T0901317) was verified. These results validated the use of B2 cells as a model. Bidimensional electrophoresis was performed on B2 cells treated with T0901317. Eight proteins up-regulated by LXRs were isolated. Only one protein has been identified: polyubiquitin, which has already been reported to be involved in cellular cholesterol homeostasis.  相似文献   

4.
5.
Liver X receptors (LXRs) play important roles in regulating cholesterol homeostasis, and lipid and energy metabolism. Therefore, LXR ligands could be used for the management of metabolic disorders. We evaluated rhein, a natural compound from Rheum palmatum L., as an antagonist for LXRs and investigated its anti-obesity mechanism in high-fat diet-fed mice. Surface plasmon resonance assays were performed to examine the direct binding of rhein to LXRs. LXR target gene expression was assessed in 3T3-L1 adipocytes and HepG2 hepatic cells in vitro. C57BL/6J mice fed a high-fat diet were orally administered with rhein for 4 weeks, and then the expression levels of LXR-related genes were analyzed. Rhein bound directly to LXRs. The expression levels of LXR target genes were suppressed by rhein in 3T3-L1 and HepG2 cells. In white adipose tissue, muscle and liver, rhein reprogrammed the expression of LXR target genes related to adipogenesis and cholesterol metabolism. Rhein activated uncoupling protein 1 (UCP1) expression in brown adipose tissue (BAT) in wild-type mice, but did not affect UCP1 expression in LXR knockout mice. In HIB-1B brown adipocytes, rhein activated the UCP1 gene by antagonizing the repressive effect of LXR on UCP1 expression. This study suggests that rhein may protect against obesity and related metabolic disorders through LXR antagonism and regulation of UCP1 expression in BAT.  相似文献   

6.
Nephrolithiasis is a common disease of the urinary system, of which idiopathic calcium oxalate (CaOx) kidney stones, in particular, are one of the special types. In the initial stages of CaOx kidney stone formation, Randall's plaques (RPs) develop. Liver X receptors (LXRs) inhibit oxidative stress and inflammatory in other diseases; nevertheless, the role of LXRs in nephrolithiasis has yet to be elucidated. In this study, the role of LXRs in the progression of RP formation was investigated. Microarray analysis revealed that LXR/RXR levels were significantly greater in low-plaque tissues (<5%) than in high-plaque tissues (>5%), confirming the link between LXR activation and RP formation. Correspondingly, expression levels of two LXR target genes, LXRα and LXRβ, were lower in high-plaque tissues than in low-plaque tissues. In vitro, LXR agonist alleviated calcium oxalate monohydrate-induced cellular calcium deposits and apoptosis. LXR activation decreased reactive oxygen species production and gene expression of inflammatory mediators, including osteopontin that has recently been demonstrated to correlate with the development of RPs. Moreover, p38 MAPK and JNK signaling may mediate LXR-regulated expression in HK-2 cells. In an animal model, the deposition was reduced by activating LXR, and osteopontin expression was also inhibited. Our findings suggest a role for LXRs in the progression of idiopathic CaOx kidney stones; LXR agonists may have therapeutic potential for the treatment of nephrolithiasis.  相似文献   

7.
Liver X receptors (LXRs) are important regulators of cholesterol and lipid metabolism. LXR agonists have been shown to limit the cellular cholesterol content by inducing reverse cholesterol transport, increasing bile acid production, and inhibiting intestinal cholesterol absorption. Most of them, however, also increase lipogenesis via sterol regulatory element-binding protein-1c (SREBP1c) and carbohydrate response element-binding protein activation resulting in hypertriglyceridemia and liver steatosis. We report on the antiatherogenic properties of the steroidal liver X receptor agonist N,N-dimethyl-3beta-hydroxy-cholenamide (DMHCA) in apolipoprotein E (apoE)-deficient mice. Long-term administration of DMHCA (11 weeks) significantly reduced lesion formation in male and female apoE-null mice. Notably, DMHCA neither increased hepatic triglyceride (TG) levels in male nor female apoE-deficient mice. ATP binding cassette transporter A1 and G1 and cholesterol 7alpha-hydroxylase mRNA abundances were increased, whereas SREBP1c mRNA expression was unchanged in liver, and even decreased in macrophages and intestine. Short-term treatment revealed even higher changes on mRNA regulation. Our data provide evidence that DMHCA is a strong candidate as therapeutic agent for the treatment or prevention of atherosclerosis, circumventing the negative side effects of other LXR agonists.  相似文献   

8.
LXRs, which are nuclear receptors, have 2 isoforms—LXRα and LXRβ. Generally, LXRα is expressed in the liver, kidney, and a limited number of other organs, whereas LXRβ is thought to be expressed ubiquitously. Nevertheless, no clear consensus has been reached on the role of each in kidney lipid metabolism.Many researchers have reported that lipids accumulate in renal tubular epithelial cells during nephrosis. The nephrosis model we used showed the presence of urinary protein 4 days after the induction of illness. Additionally, the model maintained high levels of urinary protein from day 7–14. Lipid accumulation was clearly verified at day 4 and extreme accumulation was observed at day 7. We observed increased expression of LXRα from an early stage of nephrosis. To explore the role of increased LXRα in diseased kidney in vitro, NRK52E, normal kidney tubular epithelial cells, were forced to overexpress LXRα. These cells showed significantly lower lipid accumulation than mock cells did. In contrast, LXRβ knockdown lead to increased lipid accumulation in mock cells, and constancy in overexpressing cells.In normal kidneys, LXRβ is expressed stably to control mainly the intracellular lipids. However, with increasing intracellular lipid accumulation, expression of LXRα and its downstream gene, ABCA1, was upregulated, followed by lipid excretion in an LXRα-dependent manner. This phenomenon strongly suggests the importance of LXRα in lipid metabolism in the diseased kidney.  相似文献   

9.
This study investigated the role of Liver × Receptors (LXRs) in the lipid composition and gene expression regulation in mouse caput epididymidis. LXRs are nuclear receptors for oxysterols, molecules derived from cholesterol metabolism, which are present in mammals in two isoforms: LXRα, which is more specifically expressed in lipid metabolising tissues such as liver, adipose and steroidogenic tissues, while LXRβ is ubiquitous. Their importance in reproductive physiology has been sustained by the fact that male knockout mice for both LXRs have impaired fertility from the age of 5 months, leading to complete sterility by the age of 9 months. These disorders are associated with epididymal epithelium degeneration incaput epididymidis segments one and two, and with sperm midpiece fragility, leading to the presence of isolated heads and flagellae when spermatozoa are recovered from thecauda epididymidis. To further the phenotypic characterization of LXR knockout mice, the lipid composition ofcaput epididymides from wild-type and LXR knockout mice was assessed using oil red O staining on tissue cryosections, lipid extraction followed by high performance liquid chromatography or gas chromatography. Gene expression was determined by quantitative real-time PCR. We showed an accumulation of cholesteryl esters incaput epididymides fromlxrβ -/- andlxrαβ -/- mice. This accumulation was not associated with modifications in the fatty acid profiles, which are similar in all four genotypes. Changes in the expression levels of several genes are discussed in this physiological context, but cellular cholesterol efflux pathways appear to be altered in an LXRβ-dependent fashion. Altogether, these results show that LXRs are important regulators of epididymal functions, and could therefore play a key role in lipid maturation processes occurring during sperm epididymal maturation.  相似文献   

10.
11.
12.
A novel series of cis-3,4-diphenylpyrrolidines were designed as RORγt inverse agonists based on the binding conformation of previously reported bicyclic sulfonamide 1. Preliminary synthesis and structure–activity relationship (SAR) study established (3S,4S)-3-methyl-3-(4-fluorophenyl)-4-(4-(1,1,1,3,3,3-hexafluoro-2-hydroxyprop-2-yl)phenyl)pyrrolidine as the most effective scaffold. Subsequent SAR optimization led to identification of a piperidinyl carboxamide 31, which was potent against RORγt (EC50 of 61 nM in an inverse agonist assay), selective relative to RORα, RORβ, LXRα and LXRβ, and stable in human and mouse liver microsomes. Furthermore, compound 31 exhibited considerably lower PXR Ymax (46%) and emerged as a promising lead. The binding mode of the diphenylpyrrolidine series was established with an X-ray co-crystal structure of 10A/RORγt.  相似文献   

13.
Ligand activation of liver X receptors (LXRs) has been shown to impact both lipid metabolism and inflammation. One complicating factor in studies utilizing synthetic LXR agonists is the potential for pharmacologic and receptor-independent effects. Here, we describe an LXR gain-of-function system that does not depend on the addition of exogenous ligand. We generated transgenic mice expressing a constitutively active VP16-LXRα protein from the aP2 promoter. These mice exhibit increased LXR signaling selectively in adipose and macrophages. Analysis of gene expression in primary macrophages derived from two independent VP16-LXRα transgenic lines confirmed the ability of LXR to drive expression of genes involved in cholesterol efflux and fatty acid synthesis. Moreover, VP16-LXRα expression also suppressed the induction of inflammatory genes by lipopolysaccharide to a comparable degree as synthetic agonist. We further utilized VP16-LXRα-expressing macrophages to identify and validate new targets for LXRs, including the gene encoding ADP-ribosylation factor-like 7 (ARL7). ARL7 has previously been shown to transport cholesterol to the membrane for ABCA1-associated removal and thus may be integral to the LXR-dependent efflux pathway. We show that the ARL7 promoter contains a functional LXRE and can be transactivated by LXRs in a sequence-specific manner, indicating that ARL7 is a direct target of LXR. These findings provide further support for an important role of LXRs in the coordinated regulation of lipid metabolic and inflammatory gene programs in macrophages.  相似文献   

14.
The liver X receptors (LXR) play a key role in cholesterol homeostasis and lipid metabolism. SAR studies around tertiary-amine lead molecule 2, an LXR full agonist, revealed that steric and conformational changes to the acetic acid and propanolamine groups produce dramatic effects on agonist efficacy and potency. The new analogs possess good functional activity, demonstrating the ability to upregulate LXR target genes, as well as promote cholesterol efflux in macrophages.  相似文献   

15.
16.
17.
The liver X receptors (LXRs) are nuclear receptors that form permissive heterodimers with retinoid X receptor (RXR) and are important regulators of lipid metabolism in the liver. We have recently shown that RXR agonist-induced hypertriglyceridemia and hepatic steatosis in mice are dependent on LXRs and correlate with an LXR-dependent hepatic induction of lipogenic genes. To further investigate the roles of RXR and LXR in the regulation of hepatic gene expression, we have mapped the ligand-regulated genome-wide binding of these factors in mouse liver. We find that the RXR agonist bexarotene primarily increases the genomic binding of RXR, whereas the LXR agonist T0901317 greatly increases both LXR and RXR binding. Functional annotation of putative direct LXR target genes revealed a significant association with classical LXR-regulated pathways as well as peroxisome proliferator-activated receptor (PPAR) signaling pathways, and subsequent chromatin immunoprecipitation-sequencing (ChIP-seq) mapping of PPARα binding demonstrated binding of PPARα to 71 to 88% of the identified LXR-RXR binding sites. The combination of sequence analysis of shared binding regions and sequential ChIP on selected sites indicate that LXR-RXR and PPARα-RXR bind to degenerate response elements in a mutually exclusive manner. Together, our findings suggest extensive and unexpected cross talk between hepatic LXR and PPARα at the level of binding to shared genomic sites.  相似文献   

18.
A series of 4-(3-biaryl)quinolines with sulfone substituents on the terminal aryl ring (8) was prepared as potential LXR agonists. High affinity LXRβ ligands with generally modest binding selectivity over LXRα and excellent agonist potency in LXR functional assays were identified. Many compounds had LXRβ binding IC50 values <10 nM while the most potent had EC50 values <1.0 nM in an ABCA1 mRNA induction assay in J774 mouse cells with efficacy comparable to T0901317. Sulfone 8a was further evaluated in LDL (?/?) mice and shown to reduce atherosclerotic lesion progression.  相似文献   

19.
20.
Background: The biological functions of estrogens extend beyond the female and male reproductive tract, affecting the cardiovascular and renal systems. Traditional views on the role of postmenopausal hormone therapy (HT) in protecting against heart disease, which were challenged by clinical end point studies that found adverse effects of combined HT, are now being replaced by more differentiated concepts suggesting a beneficial role of early and unopposed HT that does not include a progestin.Objective: We reviewed recent insights, concepts, and research results on the biology of both estrogen receptor (ER) subtypes, ERα and ERβ, in cardiac and vascular tissues. Knowledge of these ER subtypes is crucial to understanding gender and estrogen effects and to developing novel, exciting strategies that may have a profound clinical impact.Methods: This review focuses on in vivo studies and includes data presented at the August 2007 meeting of the American Physiological Society as well as data from a search of the MEDLINE and Ovid databases from January 1986 to November 2007. Search results were restricted to English-language publications, using the following search terms: estrogen, estrogen receptor α, estrogen receptor β, estrogen receptor α agonist, estrogen receptor α antagonist, estrogen receptor β agonist, estrogen receptor β antagonist, PPT, DPN, heart, vasculature, ERKO mice, BERKO mice, transgenic mice, and knockout mice.Results: Genetic mouse models and pharmacologic studies that employed selective as well as nonselective ER agonists support the concept that both ER subtypes confer protective effects in experimental models of human heart disease, including hypertension, cardiac hypertrophy, and chronic heart failure.Conclusions: Genetic models and novel ligands hold the promise of further improving our understanding of estrogen action in multiple tissues and organs. These efforts will ultimately enhance the safety and efficacy of HT and may also result in new applications for synthetic female sex hormone analogues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号