首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The free fatty acid receptor 1 (FFA1) plays an important role in amplifying insulin secretion in a glucose dependent manner. We have previously reported a series of FFA1 agonists with thiazole scaffold exemplified by compound 1, and identified a small hydrophobic subpocket partially occupied by the methyl group of compound 1. Herein, we describe further structure optimization to better fit the small hydrophobic subpocket by replacing the small methyl group with other hydrophobic substituents. All of these efforts resulted in the identification of compound 6, a potent FFA1 agonist (EC50 = 39.7 nM) with desired ligand efficiency (0.24) and ligand lipophilicity efficiency (4.7). Moreover, lead compound 6 exhibited a greater potential for decreasing the hyperglycemia levels than compound 1 during an oral glucose tolerance test. In summary, compound 6 is a promising FFA1 agonist for further investigation, and the structure-based study promoted our understanding for the binding pocket of FFA1.  相似文献   

2.
  1. Download : Download high-res image (117KB)
  2. Download : Download full-size image
The free fatty acid receptor 1 (FFA1) has gained significant interest as a novel antidiabetic target. Most of FFA1 agonists reported in the literature bearing a common biphenyl scaffold, which was crucial for toxicity verified by the researchers of Daiichi Sankyo. Herein, we describe the systematic exploration of non-biphenyl scaffold and further chemical modification of the optimal pyrrole scaffold. All of these efforts led to the identification of compound 11 as a potent and orally bioavailable FFA1 agonist without the risk of hypoglycemia. Further molecular modeling studies promoted the understanding of ligand-binding pocket and might help to design more promising FFA1 agonists.  相似文献   

3.
The free fatty acid receptor 1 (FFA1) enhances the glucose-stimulated insulin secretion without the risk of hypoglycemia. However, most of FFA1 agonists have a common biphenyl moiety, leading to a relative deprivation in structure types. Herein, we describe the exploration of non-biphenyl scaffold based on the co-crystal structure of FFA1 to increase additional interactions with the lateral residues, which led to the identification of lead compounds 3 and 9. In induced-fit docking study, compound 3 forms an edge-on interaction with Trp150 by slightly rotating the indole ring of Trp150, and compound 9 has additional hydrogen bond and δ-π interactions with Leu135, which demonstrated the feasibility of our design strategy. Moreover, lead compounds 3 and 9 revealed improved polar surface area compared to GW9508, and have considerable hypoglycemic effects in mice. This structure-based study might inspire us to design more promising FFA1 agonists by increasing additional interactions with the residues outside of binding pocket.  相似文献   

4.
Based on a previously reported phenoxyacetic acid scaffold, compound 7 (HWL-088) has been identified as a superior free fatty acid receptor 1 (FFA1) agonist by comprehensive structure-activity relationship study. Our results indicated that the introduction of ortho-fluoro greatly increased the activity of phenoxyacetic acid series, and the unique structure-activity relationship in biphenyl moiety is different from previously reported FFA1 agonists. Moreover, the modeling study was also performed to better understand the binding mode of present series. Compound 7 significantly improved glucose tolerance both in normal and diabetic models, and even exerted greater potential on glucose control than that of TAK-875. These findings provided a novel candidate HWL-088, which is currently in preclinical study to evaluate its potential for the treatment of diabetes.  相似文献   

5.
The free fatty acid receptor 1 (FFA1/GPR40) is a novel antidiabetic target based on particular mechanism in enhancing glucose-stimulated insulin secretion. Most of reported FFA1 agonists, however, have been suffered from relatively high lipophilicity and molecular weight. Aiming to develop potent agonists with improved physicochemical property, 25 compounds containing triazole scaffold and various carboxylic acid fragments were synthesized via the click chemistry. Among them, the optimal lead compound 26 with relatively low lipophicity (Log D7.4 = 1.95) and molecular weight (Mw = 391.78) exhibited a considerable FFA1 agonistic activity (36.15%). In addition, compound 26 revealed a significant improvement in the glucose tolerance with a 21.4% and 14.2% reduction of glucose AUC0–2h in normal ICR mice and type 2 diabetic C57BL/6 mice, respectively. All of these results demonstrated that compound 26 was considered to be a promising lead compound suitable for further optimization.  相似文献   

6.
The free fatty acid receptor 1 (FFA1) is a potential target due to its function in enhancement of glucose-stimulated insulin secretion. Takeda’s compound 1 has robustly in vitro activity for FFA1, but it has been suffered from poor pharmacokinetic (PK) profiles because the phenylpropanoic acid is vulnerable to β-oxidation. To identify orally available agonists, we tried to interdict the metabolically labile group by incorporating two deuterium atoms at the α-position of phenylpropionic acid. Interestingly, the differences of physicochemical properties between hydrogen and deuterium are quite small, but there are many differences in the structure-activity relationship between phenylpropionic acid series and present deuterated series. Further optimizations of deuterated series led to the discovery of compound 18, which exhibited a superior balance in terms of in vitro activity, lipophilicity, and solubility. Better still, compound 18 revealed a lower clearance (CL = 0.44 L/h/kg), higher maximum concentration (Cmax = 7584.27 μg/L), and longer half-life (T1/2 = 4.16 h), resulting in a >23-fold exposure than compound 1. In subsequent in vivo pharmacodynamic studies, compound 18 showed a robustly glucose-lowering effect in rodent without the risk of hypoglycemia.  相似文献   

7.
Free fatty acid receptor 1 (FFA1), previously known as GPR40 is a G protein-coupled receptor and a new target for treatment of type 2 diabetes. Two series of FFA1 agonists utilizing a 1,3,4-thiadiazole-2-caboxamide scaffold were synthetized. Both series offered significant improvement of the potency compared to the previously described 1,3,4-thiadiazole-based FFA1 agonists and high selectivity for FFA1. Molecular docking predicts new aromatic interactions with the receptor that improve agonist potency. The most potent compounds from both series were profiled for in vitro ADME properties (plasma and metabolic stability, Log D, plasma protein binding, hERG binding and CYP inhibition). One series suffered very rapid degradation in plasma and in presence of mouse liver microsomes. However, the other series delivered a lead compound that displayed a reasonable ADME profile together with the improved FFA1 potency.  相似文献   

8.
Novel 3-(1H-indol-3-yl)-1,2,4-oxadiazoles and -thiadiazoles were synthesized and found to be potent CB1 cannabinoid receptor agonists. The oral bioavailability of these compounds could be dramatically improved by optimization studies of the side chains attached to the indole and oxadiazole cores, leading to identification of a CB1 receptor agonist with good oral activity in a range of preclinical models of antinociception and antihyperalgesia.  相似文献   

9.
Structure- and ligand-based virtual-screening methods (docking, 2D- and 3D-similarity searching) were analyzed for their effectiveness in virtual screening against FFAR2. To evaluate the performance of these methods, retrospective virtual screening was performed. Statistical quality of the methods was evaluated by BEDROC and RIE. The results revealed that electrostatic similarity search protocol using EON (ET combo) outperformed all other protocols with outstanding enrichment of >95% in top 1% and 2% of the dataset with an AUC of 0.958. Interestingly, the hit lists that are obtained from different virtual-screening methods are generally highly complementary to hits found from electrostatic similarity searching. These results suggest that considering electrostatic similarity searching first increases the chance of identifying more (and more diverse) active compounds from a virtual-screening campaign. Accordingly, prospective virtual screening using electrostatic similarity searching was used to identify novel FFAR2 ligands. The discovered compounds provide new chemical matter starting points for the initiation of a medicinal chemistry campaign.  相似文献   

10.
The exploration of a diarylsulfonamide series of free fatty acid receptor 4 (FFA4/GPR120) agonists is described. This work led to the identification of selective FFA4 agonist 8 (GSK137647A) and selective FFA4 antagonist 39. The in vitro profile of compounds 8 and 39 is presented herein.  相似文献   

11.
GPR40 is G protein-coupled receptor whose endogenous ligands have recently been identified as free fatty acids (FFAs), and it has been implicated to play an important role in FFA-mediated enhancement of glucose-stimulated insulin release. We have developed a monoclonal antibody against the extracellular domain of GPR40. Specificity of the antibody was demonstrated by immunoprecipitation and cell surface staining using GPR40-transfected cells. GPR40 immunoreactivity was highly abundant in mouse pancreatic β-cells and splenocytes, THP-1 cells, and human peripheral blood mononuclear cells. The anti-GPR40 monoclonal antibody should prove valuable for further studying the function of this nutrient sensing receptor.  相似文献   

12.
1,3,4-Thiadiazole was explored as a more polar, heterocyclic replacement for the phenyl ring in the 3-arylpropionic acid pharmacophore present in the majority of GPR40 agonists. Out of 13 compounds synthesized using a flexible, three-step protocol (involving no chromatographic purification), four compounds were confirmed to activate the target in micromolar concentration range. While the potency of the series should be subject of further optimization, the remarkable aqueous solubility and microsomal stability observed for the lead compound (8g) apparently attests to this new scaffold’s high promise in the GPR40 agonist field.  相似文献   

13.
The free fatty acid receptor 1 (FFA1), a G protein-coupled receptor (GPCR) naturally activated by long-chain fatty acids is a novel target for the treatment of metabolic diseases. The basic amine spirocyclic periphery of Eli Lilly’s drug candidate LY2881835 for treatment of type 2 diabetes mellitus (which reached phase I clinical trials) inspired a series of novel FFA1 agonists. These were designed to incorporate the 3-[4-(benzyloxy)phenyl]propanoic acid pharmacophore core decorated with a range of spirocyclic motifs. The latter were prepared via the Prins cyclization and subsequent modification of the 4-hydroxytetrahydropyran moiety in the Prins product. Here, we synthesize 19 compounds and test for FFA1 activity. Within this pilot set, a nanomolar potency (EC50 = 55 nM) was reached. Four lead compounds (EC50 range 55–410 nM) were characterized for aqueous solubility, metabolic stability, plasma protein binding and Caco-2 permeability. While some instability in the presence of mouse liver microsomes was noted, mouse pharmacokinetic profile of the compound having the best overall ADME properties was evaluated to reveal acceptable bioavailability (F = 10.3%) and plasma levels achieved on oral administration.  相似文献   

14.
The long chain free fatty acid receptor 4 (FFA4/GPR120) has recently been recognized as lipid sensor playing important roles in nutrient sensing and inflammation and thus holds potential as a therapeutic target for type 2 diabetes and metabolic syndrome. To explore the effects of stimulating this receptor in animal models of metabolic disease, we initiated work to identify agonists with appropriate pharmacokinetic properties to support progression into in vivo studies. Extensive SAR studies of a series of phenylpropanoic acids led to the identification of compound 29, a FFA4 agonist which lowers plasma glucose in two preclinical models of type 2 diabetes.  相似文献   

15.
目的:通过培养3T3-L1前脂肪细胞,并诱导其分化至成熟,研究游离脂肪酸对脂肪细胞糖代谢的影响。方法:培养诱导3T3-L1脂肪细胞,用油红O染色鉴定并比较其形态结构的变化。LPS、EPA、SA、PA干预成熟脂肪细胞,收集不同时间的培养基,葡萄糖氧化酶法算出各组脂肪细胞的葡萄糖消耗量。用Western blot检测不同时间各组干预后细胞AMPK、GLUT4蛋白含量。结果:油红O染色鉴定成熟脂肪细胞胞浆中的脂滴染成红色,并出现戒环样结构;诱导分化第8天,90%以上细胞均分化成熟。含LPS、EPA、SA、PA的培养基作用于成熟脂肪细胞,随着时间的延长,显著抑制脂肪细胞对葡萄糖的吸收(P<0.05),同时,脂肪细胞AMPK、GLUT4蛋白含量在减少(P<0.05)。结论:游离脂肪酸可以诱导胰岛素抵抗的分子机制可能是通过胰岛素信号通路激活蛋白激酶(AMPK),进而影响GLUT4的蛋白表达,使脂肪细胞的葡萄糖吸收率减低,影响脂肪细胞的糖代谢。  相似文献   

16.
We designed and synthesized novel N-sulfonyl-7-azaindoline derivatives as selective M4 muscarinic acetylcholine receptor agonists. Modification of the N-carbethoxy piperidine moiety of compound 2, an M4 muscarinic acetylcholine receptor (mAChR)-preferring agonist, led to compound 1, a selective M4 mAChR agonist. Compound 1 showed a highly selective M4 mAChR agonistic activity with weak hERG inhibition in vitro. A pharmacokinetic study of compound 1 in vivo revealed good bioavailability and brain penetration in rats. Compound 1 reversed methamphetamine-induced locomotor hyperactivity in rats (1–10 mg/kg, po).  相似文献   

17.
Optimization of a water soluble, moderately potent lead series of isoxazole-3-carboxamides was conducted, affording a compound with the requisite balance of potency, solubility and physicochemical properties for in vivo use. Compound 8e was demonstrated to be efficacious in a rat model of inflammatory pain, following oral administration.  相似文献   

18.
A series of six-membered heterocycle carboxamides were synthesized and evaluated as cholecystokinin 1 receptor (CCK1R) agonists. A pyrimidine core proved to be the best heterocycle, and SAR studies resulted in the discovery of analog 5, a potent and structurally diverse CCK1R agonist.  相似文献   

19.
The cardiovascular complications were highly prevalent in type 2 diabetes mellitus (T2DM), even at the early stage of T2DM or the state of intensive glycemic control. Thus, there is an urgent need for the intervention of cardiovascular complications in T2DM. Herein, the new hybrids of FFA1 agonist and NO donor were design to obtain dual effects of anti-hyperglycemic and anti-thrombosis. As expected, the induced-fit docking study suggested that it is feasible for our design strategy to hybrid NO donor with compound 1. These hybrids exhibited moderate FFA1 agonistic activities and anti-platelet aggregation activities, and their anti-platelet effects mediated by NO were also confirmed in the presence of NO scavenger. Moreover, compound 3 revealed significantly hypoglycemic effect and even stronger than that of TAK-875 during an oral glucose tolerance test in mice. Potent and multifunctional hybrid, such as compound 3, is expected as a potential candidate with additional cardiovascular benefits for the treatment of T2DM.  相似文献   

20.
Free fatty acid receptor 2 (FFA2; GPR43) is a G protein-coupled seven-transmembrane receptor for short-chain fatty acids (SCFAs) that is implicated in inflammatory and metabolic disorders. The SCFA propionate has close to optimal ligand efficiency for FFA2 and can hence be considered as highly potent given its size. Propionate, however, does not discriminate between FFA2 and the closely related receptor FFA3 (GPR41). To identify FFA2-selective ligands and understand the molecular basis for FFA2 selectivity, a targeted library of small carboxylic acids was examined using holistic, label-free dynamic mass redistribution technology for primary screening and the receptor-proximal G protein [(35)S]guanosine 5'-(3-O-thio)triphosphate activation, inositol phosphate, and cAMP accumulation assays for hit confirmation. Structure-activity relationship analysis allowed formulation of a general rule to predict selectivity for small carboxylic acids at the orthosteric binding site where ligands with substituted sp(3)-hybridized α-carbons preferentially activate FFA3, whereas ligands with sp(2)- or sp-hybridized α-carbons prefer FFA2. The orthosteric binding mode was verified by site-directed mutagenesis: replacement of orthosteric site arginine residues by alanine in FFA2 prevented ligand binding, and molecular modeling predicted the detailed mode of binding. Based on this, selective mutation of three residues to their non-conserved counterparts in FFA3 was sufficient to transfer FFA3 selectivity to FFA2. Thus, selective activation of FFA2 via the orthosteric site is achievable with rather small ligands, a finding with significant implications for the rational design of therapeutic compounds selectively targeting the SCFA receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号