首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We designed and synthesized an estrogen receptor (ER) down-regulator (5), which is a derivative of tamoxifen with a long alkyl side chain. Compound 5 effectively reduced ER protein levels in MCF-7 cells and had an antagonistic effect.  相似文献   

2.
In the present study, we have designed and synthesized indole derivatives by coalescing the indole nucleus with chromene carbonitrile and dihydropyridine nucleus. Two compounds 5c and 6d were selected from series I and II after sequential combinatorial library generation, docking, absorption, distribution, metabolism and excretion (ADME) filtering, anti-proliferative activity, cytotoxicity, and ER-α competitor assay kit by utilizing estrogen receptor-α (ER-α) dominant T47D BC cells line and PBMCs (Peripheral Blood Mononuclear Cells). Cell imaging experiment suggested that both the compounds successfully cross cellular biomembrane and accumulate in nuclear, cytoplasmic and plasma membrane region. Semiquantitative RT-PCR and Western blotting experiments further supported that both compounds reduced the expression of mRNA and receptor protein of ER-α, thereby preventing downstream transactivation and signaling pathway in T47D cells line. Current findings imply that 5c and 6d represent novel ER-α antagonists and may be used in the development of chemotherapy for the management of BC.  相似文献   

3.
Tamoxifen (TAM) is used for the treatment and prevention of estrogen receptor positive breast cancer. However, the limited activity, toxicity and the development of resistance raised the current need for new potent nontoxic antiestrogen. Six novel TAM analogues 5af were synthesized using McMurry olefination reaction. Replacement of the dimethylamino group in TAM by piperidino, piperazino or N-methyl piperazino, substituting the phenyl ring with florine atom at p-position and changing the ethyl group by methyl, afforded compounds showing comparable activity to TAM (1). Compounds 5c and 5e showed significant increase in antiproliferative activity in two breast cancer cell lines (MCF-7 and MDA-MB-231) compared to tamoxifen, while other compounds showed similar activity. The increased anticancer activity of compounds 5c and 5e was attributed to their ability to induce ER-independent cell death.  相似文献   

4.
5.
6.
The purpose of the current study was to investigate the ability of the third-generation selective estrogen receptor modulators (SERMs) bazedoxifene and lasofoxifene to bind and act on CB2 cannabinoid receptor. We have identified, for the first time, that CB2 is a novel target for bazedoxifene and lasofoxifene. Our results showed that bazedoxifene and lasofoxifene were able to compete for specific [3H]CP-55,940 binding to CB2 in a concentration-dependent manner. Our data also demonstrated that by acting on CB2, bazedoxifene and lasofoxifene concentration-dependently enhanced forskolin-stimulated cAMP accumulation. Furthermore, bazedoxifene and lasofoxifene caused parallel, rightward shifts of the CP-55,940, HU-210, and WIN55,212-2 concentration–response curves without altering the efficacy of these cannabinoid agonists on CB2, which indicates that bazedoxifene- and lasofoxifene-induced CB2 antagonism is most likely competitive in nature. Our discovery that CB2 is a novel target for bazedoxifene and lasofoxifene suggests that these third-generation SERMs can potentially be repurposed for novel therapeutic indications for which CB2 is a target. In addition, identifying bazedoxifene and lasofoxifene as CB2 inverse agonists also provides important novel mechanisms of actions to explain the known therapeutic effects of these SERMs.  相似文献   

7.
8.
Tamoxifen, a pioneering selective estrogen receptor modulator (SERM), has long been a therapeutic choice for all stages of estrogen receptor (ER)-positive breast cancer. The clinical application of long-term adjuvant antihormone therapy for the breast cancer has significantly improved breast cancer survival. However, acquired resistance to SERM remains a significant challenge in breast cancer treatment. The evolution of acquired resistance to SERMs treatment was primarily discovered using MCF-7 tumors transplanted in athymic mice to mimic years of adjuvant treatment in patients. Acquired resistance to tamoxifen is unique because the growth of resistant tumors is dependent on SERMs. It appears that acquired resistance to SERM is initially able to utilize either E2 or a SERM as the growth stimulus in the SERM-resistant breast tumors. Mechanistic studies reveal that SERMs continuously suppress nuclear ER-target genes even during resistance, whereas they function as agonists to activate multiple membrane-associated molecules to promote cell growth. Laboratory observations in vivo further show that three phases of acquired SERM-resistance exists, depending on the length of SERMs exposure. Tumors with Phase I resistance are stimulated by both SERMs and estrogen. Tumors with Phase II resistance are stimulated by SERMs, but are inhibited by estrogen due to apoptosis. The laboratory models suggest a new treatment strategy, in which limited-duration, low-dose estrogen can be used to purge Phase II-resistant breast cancer cells. This discovery provides an invaluable insight into the evolution of drug resistance to SERMs, and this knowledge is now being used to justify clinical trials of estrogen therapy following long-term antihormone therapy. All of these results suggest that cell populations that have acquired resistance are in constant evolution depending upon selection pressure. The limited availability of growth stimuli in any new environment enhances population plasticity in the trial and error search for survival.  相似文献   

9.
The discovery of the first nonsteroidal antiestrogen ethamoxytriphetol (MER25) in 1958, opened the door to a wide range of clinical applications. However, the finding that ethamoxytriphetol was a “morning after” pill in laboratory animals, energized the pharmaceutical industry to discover more potent derivatives. In the wake of the enormous impact of the introduction of the oral contraceptive worldwide, contraceptive research was a central focus in the early 1960’s. Numerous compounds were discovered e.g., clomiphene, nafoxidine, and tamoxifen, but the fact that clinical studies showed no contraceptive actions, but, in fact, induced ovulation, dampened enthusiasm for clinical development. Only clomiphene moved forward to pioneer an application to induce ovulation in subfertile women. The fact that all the compounds were antiestrogenic made an application in patients to treat estrogen responsive breast cancer, an obvious choice. However, toxicities and poor projected commercial returns severely retarded clinical development for two decades. In the 1970’s a paradigm shift in the laboratory to advocate long term adjuvant tamoxifen treatment for early (non-metastatic) breast cancer changed medical care and dramatically increased survivorship. Tamoxifen pioneered that paradigm shift but it became the medicine of choice in a second paradigm shift for preventing breast cancer during the 1980’s and 1990’s. This was not surprising as it was the only medicine available and there was laboratory and clinical evidence for the eventual success of this application. Tamoxifen is the first medicine to be approved by the Food and Drug Administration (FDA) to reduce the risk of breast cancer in women at high risk. But it was the re-evaluation of the toxicology of tamoxifen in the 1980’s and the finding that there was both carcinogenic potential and a significant, but small, risk of endometrial cancer in postmenopausal women that led to a third paradigm shift to identify applications for selective estrogen receptor (ER) modulation. This idea was to establish a new group of medicines now called selective ER modulators (SERMs). Today there are 5 SERMs FDA approved (one other in Europe) for applications ranging from the reduction of breast cancer risk and osteoporosis to the reduction of menopausal hot flashes and improvements in dyspareunia and vaginal lubrication. This article charts the origins of the current path for progress in women’s health with SERMs.  相似文献   

10.
The main function of Erythropoietin (EPO) and its receptor (EPOR) is the stimulation of erythropoiesis. Recombinant human EPO (rhEPO) is therefore used to treat anemia in cancer patients. However, clinical trials have indicated that rhEPO treatment might promote tumor progression and has a negative effect on patient survival. In addition, EPOR expression has been detected in several cancer forms. Using a newly produced anti-EPOR antibody that reliably detects the full-length isoform of the EPOR we show that breast cancer tissue and cells express the EPOR protein. rhEPO stimulation of cultured EPOR expressing breast cancer cells did not result in increased proliferation, overt activation of EPOR (receptor phosphorylation) or a consistent activation of canonical EPOR signaling pathway mediators such as JAK2, STAT3, STAT5, or AKT. However, EPOR knockdown experiments suggested functional EPO receptors in estrogen receptor positive (ERα+) breast cancer cells, as reduced EPOR expression resulted in decreased proliferation. This effect on proliferation was not seen in ERα negative cells. EPOR knockdown decreased ERα activity further supports a mechanism by which EPOR affects proliferation via ERα-mediated mechanisms. We show that EPOR protein is expressed in breast cancer cells, where it appears to promote proliferation by an EPO-independent mechanism in ERα expressing breast cancer cells.  相似文献   

11.
A series of novel chalcone-rivastigmine hybrids were designed, synthesized, and tested in vitro for their ability to inhibit human acetylcholinesterase and butyrylcholinesterase. Most of the target compounds showed hBChE selective activity in the micro- and submicromolar ranges. The most potent compound 3 exhibited comparable IC50 to the commercially available drug (rivastigmine). To better understand their structure activity relationships (SAR) and mechanisms of enzyme-inhibitor interactions, kinetic and molecular modeling studies including molecular docking and molecular dynamics (MD) simulations were carried out. Furthermore, compound 3 blocks the formation of reactive oxygen species (ROS) in SH-SY5Y cells and shows the required druggability and low cytotoxicity, suggesting this hybrid is a promising multifunctional drug candidate for Alzheimer’s disease (AD) treatment.  相似文献   

12.
13.
Potent estrogen receptor ligands typically contain a phenolic hydrogen-bond donor. The indazole of the selective estrogen receptor degrader (SERD) ARN-810 is believed to mimic this. Disclosed herein is the discovery of ARN-810 analogs which lack this hydrogen-bond donor. These SERDs induced tumor regression in a tamoxifen-resistant breast cancer xenograft, demonstrating that the indazole NH is not necessary for robust ER-modulation and anti-tumor activity.  相似文献   

14.
A library of benzofurans was prepared by solid-phase synthesis methods, and several analogues were identified as potent ligands for the estrogen receptors ER-alpha and ER-beta, with some compounds having selectivity for ER-alpha. Analogues designed to more closely mimic Raloxifene were less effective. Certain benzofurans were effective in a bone pit assay, but were characterized as agonists in a MCF-7 breast tumor cell proliferation assay.  相似文献   

15.
16.
Estrogen receptors (ERs) play a major role in the growth of human breast cancer cells. A selective estrogen receptor down-regulator (SERD) that acts as not only an inhibitor of ligand binding, but also induces the down-regulation of ER, would be useful for the treatment for ER-positive breast cancer. We previously reported that tamoxifen derivatives, which have a long alkyl chain, had the ability to down-regulate ERα. With the aim of expanding range of the currently available SERDs, we designed and synthesized raloxifene derivatives, which had various lengths of the long alkyl chains, and evaluated their SERD activities. All compounds were able to bind ERα, and RC10, which has a decyl group on the amine moiety of raloxifene, was shown to be the most potent compound. Our findings suggest that the ligand core was replaceable, and that the alkyl length was important for controlling SERD activity. Moreover, RC10 showed antagonistic activity and its potency was superior to that of 4,4′-(heptane-4,4-diyl)bis(2-methylphenol) (18), a competitive antagonist of ER without SERD activity. These results provide information that will be useful for the development of promising SERDs candidates.  相似文献   

17.
Clinical management of breast cancer is increasingly guided by assessment of tumor phenotypic parameters. One of these is estrogen receptor (ER) status, currently defined by ERalpha expression. However with the discovery of a second ER, ERbeta and its variant isoforms, the definition of ER status is potentially more complex. In breast tumors there are two ERbeta expression cohorts. One where ERbeta is co-expressed with ERalpha and the other expressing ERbeta alone. In the latter subgroup of currently defined ER negative patients ERbeta has the potential to be a therapeutic target. Characterization of the nature and role of ERbeta in ERalpha negative tumors is essentially unexplored but available data suggest that the role of ERbeta may be different when co-expressed with ERalpha and when expressed alone. This review summarizes available data and explores the possibility that ERbeta signaling may be a therapeutic target in these tumors. Evidence so far supports the idea that the role of ERbeta in breast cancer is different in ERalpha negative compared to ERalpha positive tumors. However, cohort size and numbers of independent studies are small to date, and more studies are needed with better standardization of antibodies and protocols. Also, the ability to determine the role of ERbeta in ERalpha negative breast cancer and therefore assess ERbeta signaling pathways as therapeutic targets would be greatly facilitated by identification of specific downstream markers of ERbeta activity in breast cancer.  相似文献   

18.
The estrogen receptor (ER), a member of the nuclear receptor (NR) family, is involved in the regulation of physiological effects such as reproduction and bone homeostasis. Approximately 70% of human breast cancers are hormone-dependent and ERα-positive, and, thus, ER antagonists are broadly used in breast cancer therapy. We herein designed and synthesized a set of ER antagonists with a 4-heterocycle-4-phenylheptane skeleton.  相似文献   

19.
Eleven compounds were identified as estrogen receptor modulators from an in-house natural product database (NPD) by structure-based virtual screening for ERα and ERβ. Among them, 3 compounds were confirmed as ER agonists and 8 compounds were confirmed as ER antagonists by yeast two-hybrid (Y2H) assay, with EC50 values ranging from several micromolar to 100 micromolar. In this study, a novel series of cycloartane triterpenoids isolated from Schisandra glaucescens Diels was found to have ER antagonistic effect, the most potent antagonist of which exhibited activity with EC50 value of 2.55 and 4.68 μM for ERα and ERβ, respectively. Moreover, the types of modulation and subtype selectivity were also investigated through molecular docking simulation.  相似文献   

20.
In continuation of our investigation of pharmacologically-motivated natural products, we have isolated bergenin (1) as a major compound from Mallotus philippensis, which is deployed in different Indian traditional systems of medicine. Here, a series of bergenin-1,2,3-triazole hybrids were synthesized and evaluated for their potentials against a panel of cancer cell lines. Several of the hybrid derivatives were found more potent in comparison to parent compound bergenin (1). Among them, 4j demonstrated potent activity against A-549 and HeLa cell lines with IC50 values of 1.86 µM and 1.33 μM, respectively, and was equipotent to doxorubicin. Cell cycle analysis showed that 4j arrested HeLa cells at G2/M phase and lead to accumulation of Cyclin B1 protein. Cell based tubulin polymerization assays and docking studies demonstrated that 4j disrupts tubulin assembly by occupying colchicine binding pocket of tubulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号