首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The synthesis of alcyopterosin A and a series of new derivatives possessing an illudalane skeleton is described. The DNA binding properties of these compounds have been examined and compared to those of reference drugs using a UV spectroscopy technique. The antitumor activity of selected compounds against a panel of 60 human tumor cell lines was tested in the in vitro anticancer screening of the National Cancer Institute. Redox properties were also evaluated. Tested compounds showed significant DNA affinity, derivatives 6 and 15 exhibited remarkable antiproliferative activity and have been identified as new leads in the antitumor strategies.  相似文献   

2.
The discovery of new non-nucleoside antiviral compounds is of significant and growing interest for treating herpes virus infections due to the emergence of nucleoside-resistant strains. Using a whole cell virus-induced cytopathogenic assay, we tested a series of substituted triaryl heterocyclic compounds including acridones, xanthones, and acridines. The compounds which showed activity against Herpes Simplex-1 and/or Herpes Simplex-2 were further assayed for inhibition of topoisomerase activity to gain insight into the mechanism of action. The results indicate that the acridine analogs bearing substituted carboxamides and bulky 9-amino functionalities are able to inhibit herpes infections as well as inhibit topoisomerase II relaxation of supercoiled DNA. Given the mechanism of action of amsacrine (a closely related, well-studied 9-amino substituted acridine), the compounds were further tested in a DNA topoisomerase II cleavage assay to determine if the compounds function as poisons. The results show that the acridines synthesized in this study function through a different mechanism to that of amsacrine, most likely by blocking topoisomerase binding to DNA (akin to that of aclarubicin). This not only suggests a unique mechanism of action in treating herpes virus infections, but also may be of great interest in the development of anticancer agents that target topoisomerase II activity.  相似文献   

3.
HDAC inhibitors enable histones to maintain a high degree of acetylation. The resulting looser state of chromatin DNA may increase the accessibility of DNA drug targets and consequently improve the efficiency of anticancer drugs targeting DNA, such as Topo II inhibitors. A novel class of nucleoside-SAHA derivatives has been designed and synthesized based on the synergistic antitumor effects of topoisomerase II and histone deacetylase inhibitors. Their inhibitory activities toward histone deacetylases and Topo II, and their cytotoxicities in cancer cell lines, were evaluated. Among the synthesized hybrid compounds, compound 16b showed the potent HDAC inhibitory activity at a low nanomolar level and exhibited antiproliferative activity toward cancer cell lines including MCF-7 (breast), HCT-116 (colon), and DU-145 (prostate) cancer cells at a low micromolar level. Moreover, compound 16a showed HDAC6-selectivity 20-fold over HDAC1.  相似文献   

4.
Anticancer drugs that bind to DNA and inhibit DNA-processing enzymes represent an important class of anticancer drugs. Combilexin molecules, which combine DNA minor groove binding and intercalating functionalities, have the potential for increased DNA binding affinity and increased selectivity due to their dual mode of DNA binding. This study describes the synthesis of DNA minor groove binder netropsin analogs containing either one or two N-methylpyrrole carboxamide groups linked to DNA-intercalating anthrapyrazoles. Those hybrid molecules which had both two N-methylpyrrole groups and terminal (dimethylamino)alkyl side chains displayed submicromolar cytotoxicity towards K562 human leukemia cells. The combilexins were also evaluated for DNA binding by measuring the increase in DNA melting temperature, for DNA topoisomerase IIα-mediated double strand cleavage of DNA, for inhibition of DNA topoisomerase IIα decatenation activity, and for inhibition of DNA topoisomerase I relaxation of DNA. Several of the compounds stabilized the DNA–topoisomerase IIα covalent complex indicating that they acted as topoisomerase IIα poisons. Some of the combilexins had higher affinity for DNA than their parent anthrapyrazoles. In conclusion, a novel group of compounds combining DNA intercalating anthrapyrazole groups and minor groove binding netropsin analogs have been designed, synthesized and biologically evaluated as possible novel anticancer agents.  相似文献   

5.
Designed and synthesized were a series of pyridines substituted at 2, 4, and 6 positions with various 5- or 6-memberd heteroaromatics as antitumor agents. They were evaluated their topoisomerase I and II inhibitory activities along with cytotoxicities against several human cancer cell lines. Among the prepared compounds, 10-20 showed significant topoisomerase I or II inhibitory activities, and 21-26 showed considerable cytotoxicities against several human cancer cell lines. Structure-activity relationship study indicates that 4'-pyridine at 6-position of central pyridine plays a key role in biological activity.  相似文献   

6.
A variety of antitumor agents currently used in chemotherapy or evaluated in clinical trials are known to inhibit DNA topoisomerase I or II. We have developed sixteen quantitative structure-activity relationships (QSAR) for different sets of compounds that are camptothecin analogs, 1,4-naphthoquinones, unsaturated acids, benzimidazoles, quinolones, and miscellaneous fused heterocycles to understand chemical-biological interactions governing their inhibitory activities toward topoisomerase I and II.  相似文献   

7.
Topoisomerase II is a major molecular target for a number of DNA-binding anticancer drugs. In the present study, we report topoisomerase II inhibition and anticancer activity by four substituted ferrocene derivatives which do not bind to DNA. The first derivative, acetyl-substituted ferrocene (monoacetylferrocene), showed a minor inhibition of topoisomerase II activity along with a consequent inhibition of cancer cell proliferation. The second derivative (diacetylferrocene) showed a higher potency of action compared to the monosubstituted derivative. The third and fourth derivatives, with mono- and disubstituted carboxaldoxime groups (ferrocenecarboxaldoxime and ferrocenedicarboxaldoxime), showed a higher anticancer action and stronger topoisomerase II inhibition. To understand their molecular mechanism of action, cleavage assays were carried out to monitor the drug-induced, topoisomerase II mediated DNA cleavage. The results show that diacetylferrocene and ferrocenedicarboxaldoxime could form an enzyme-drug-DNA ternary complex, called a "cleavage complex," resulting in DNA cleavage. These results along with those of an immunoprecipitation assay indicate that the two compounds interact with topoisomerase II alone and poison its activity by trapping the enzyme and enzyme-cleaved DNA in the covalently closed cleavage complex. The formation of such a complex has numerous genetic implications, which ultimately results in neoplastic cell death.  相似文献   

8.
Three series of indeno[1,2-c]isoquinolin-5,11-dione-amino acid conjugates were designed and synthesized. Amino acids were connected to the tetracycle through linkers with lengths of n=2 and 3 atoms using ester (series I), amide (series II), and secondary amine (series III) functions. DNA binding was evaluated by thermal denaturation and fluorescence measurements. Lysine and arginine substituted derivatives with n=3 provided the highest DNA binding. Arginine derivative 32 (n=2, series II) and glycine derivative 34 (n=2, series III) displayed high topoisomerase II inhibition. Incrementing the length of the N-6 side chain from two to three methylene units provided a significant increase in DNA affinity but a substantial loss in topoisomerase II inhibition. The most cytotoxic compounds toward HL60 leukemia cells were 19, 33, and 34 displaying micromolar IC(50) values. When tested with the topoisomerase II-mutated HL60/MX2 cell line, little variation of IC(50) values was found, suggesting that topoisomerase II might not be the main target of these compounds and that additional targets could be involved.  相似文献   

9.
The substituted chloroisoquinolinediones and pyrido[3,4-b]phenazinediones were synthesized, and the cytotoxic activity and topoisomerase II inhibitory activity of the prepared compounds were evaluated. Chloroisoquinolinediones have been prepared by the reported method employing 6,7-dichloroisoquinoline-5,8-dione. The cyclization to pyrido[3,4-b]phenazinediones was achieved by adding the aqueous sodium azide solution to the dimethylformamide solution of corresponding chloroisoquinoline-5,8-dione. The cytotoxicity of the synthesized compounds was evaluated by a SRB (Sulforhodamine B) assay against various cancer cell lines such as A549 (human lung cancer cell line), SNU-638 (human stomach cancer cell), Col2 (human colon cancer cell line), HT1080 (human fibrosarcoma cell line), and HL-60 (human leukemia cell line). Almost all the synthesized pyrido[3,4-b]phenazinediones showed greater cytotoxic potential than ellipticine (IC(50)=1.82-5.97 microM). In general, the cytotoxicity of the pyrido[3,4-b]phenazinediones was higher than that of the corresponding chloroisoquinolinediones. The caco-2 cell permeability of selected compounds was 0.62 x 10(-6)-35.3 x 10(-6)cm/s. The difference in cytotoxic activity among tested compounds was correlated with the difference in permeability to some degree. To further investigate the cytotoxic mechanism, the topoisomerase II inhibitory activity of the synthesized compounds was estimated by a plasmid cleavage assay. Most of compounds showed the topoisomerase II inhibitory activity (28-100%) at 200 microM. IC(50) values for the most active compound 6a were 0.082 microM. However, the compounds were inactive for DNA relaxation by topoisomerase I at 200 microM.  相似文献   

10.
An 11,13-O,O'-cyclosulfite GL-331 analogue (7) was synthesized in six steps from podophyllotoxin and evaluated as a potential antitumor agent. Compound 7 was significantly cytotoxic against human tumor cell lines, but showed no inhibition against human DNA topoisomerase II in vitro. This compound represents a novel prototype of antitumor podophyllotoxin analogues.  相似文献   

11.
A series of novel N-phenylbenzamide-4-methylamine acridine derivatives were designed and synthesized based initially on the structure of amsacrine (m-AMSA). Molecular docking suggested that the representative compound 9a had affinity for binding DNA topoisomerase (Topo) II, which was comparable with that of m-AMSA, and furthermore that 9a could have preferential interactions with Topo I. After synthesis of 9a and analogues 9b-9f, these were all tested in vitro and the synthesized compounds displayed potent antiproliferative activity against three different cancer cell lines (K562, CCRF-CEM and U937). Among them, compounds 9b, 9c and 9d exhibiting the highest activity with IC50 value ranging from 0.82 to 0.91 μM against CCRF-CEM cells. In addition, 9b and 9d also showed high antiproliferative activity against U937 cells, with IC50 values of 0.33 and 0.23 μM, respectively. The pharmacological mechanistic studies of these compounds were evaluated by Topo I/II inhibition, western blot assay and cell apoptosis detection. In summary, 9b effectively inhibited the activity of Topo I/II and induced DNA damage in CCRF-CEM cells and, moreover, significantly induced cell apoptosis in a concentration-dependent manner. These observations provide new information and guidance for the structural optimization of more novel acridine derivatives.  相似文献   

12.
In the course of structure-activity relationship studies, new rebeccamycin derivatives substituted in 3,9-positions on the indolocarbazole framework, and a 2',3'-anhydro derivative were prepared by semi-synthesis from rebeccamycin. The antiproliferative activities against nine tumor cell lines were determined and the effect on the cell cycle of murine leukemia L1210 cells was examined. Their DNA binding properties and inhibitory properties toward topoisomerase I and three kinases PKCzeta, CDK1/cyclin B, CDK5/p25 and a phosphatase cdc25A were evaluated. The 3,9-dihydroxy derivative is the most efficient compound of this series toward CDK1/cyclin B and CDK5/p25. It is also characterized as a DNA binding topoisomerase I poison. Its broad spectrum of molecular activities likely accounts for its cytotoxic potential. This compound which displays a tumor cell line-selectivity may represent a new lead for subsequent drug design in this series of glycosylated indolocarbazoles.  相似文献   

13.
A series of benz[f]indole-4,9-diones, based on the antitumor activity of 1,4-naphthoquinone, were synthesized and evaluated for their cytotoxic activity in cultured human cancer cell lines A549 (lung cancer), Col2 (colon cancer), and SNU-638 (stomach cancer), and also for the inhibition of human DNA topoisomerases I and II activity in vitro. Several compounds including 2-amino-3-ethoxycarbonyl-N-methyl-benz[f]indole-4,9-dione showed a potential cytotoxic activity judged by IC50<20.0 microg/ml in the panel of cancer cell lines. Especially, 2-hydroxy-3-ethoxycarbonyl-N-(3,4-dimethylphenyl)-benz[f]indole-4,9-dione had potential selective cytotoxicity against lung cancer cells (IC50=0.4 microg/ml)) compared to colon (IC50>20.0 microg/ml) and stomach (IC50>20.0 microg/ml) cancer cells. To further investigate the cytotoxic mechanism, the effects of test compounds on DNA topoisomerase I and II activities were used. In a topoisomerase I-mediated relaxation assay using human placenta DNA topoisomerase I and supercoiled pHOTI plasmid DNA, 2-amino-3-ethoxycarbonyl-N-(4-fluorophenyl)-benz[f]indole-4,9-dione had the most potent inhibitory activity among the compounds tested. However, most of the compounds showed only weak inhibition of the DNA topoisomerase II-mediated KDNA (Kinetoplast DNA) decatenation assay, except for 2-amino-3-ethoxycarbonyl-N-(4-methylphenyl)-benz[f]indole-4,9-dione and 2-amino-3-ethoxycarbonyl-N-(2-bromoehtyl)-benz[f]indole-4,9-dione with a moderate inhibitory activity. These results suggest that several active compounds had relatively selective inhibitory activity against toposiomearse I compared to toposiomerase II. No obvious correlation was observed between the cytotoxicity of the individual compound and the inhibitory activity of DNA relaxation and decatenation by topoisomerase I and II, respectively, in vitro.  相似文献   

14.
To investigate the structure–activity relationships of 3-arylisoquinolines, diverse substituted 3-aryisoquinolinamines were synthesized and tested in vitro antitumor activity against four tumor cell lines. Some of the compounds showed potent topoisomerase I inhibitory activity. Docking study of 7d with topoisomerase I–DNA complex was also performed.  相似文献   

15.
Wang B  Miao ZW  Wang J  Chen RY  Zhang XD 《Amino acids》2008,35(2):463-468
A series of novel naphthoquinone fused cyclic alpha-aminophosphonates, 2-alkoxy-3,4-dihydro-2H-naphtho[2,3-e][1,4,2]oxazaphosphinane-5,10-dione 2-oxide 3-17 and naphthoquinone fused cyclic alpha-aminophosphonic monoester 18 were synthesized for the first time. These cyclic alpha-aminophosphonates were evaluated for antitumor activity on four human tumor cell lines, and three of them showed significant cytotoxicity (IC(50): 0.019-5.15 microM) comparable to that of the reference drug doxorubicin. Furthermore, inhibition assays for topoisomerase II-mediated relaxation of supercoiled DNA indicated that the naphthoquinone fused cyclic aminophosphonates were catalytic inhibitors of topoisomerase II.  相似文献   

16.
A series of bisintercalating DNA binding bisanthrapyrazole compounds containing piperazine linkers were designed by molecular modeling and docking techniques. Because the anthrapyrazoles are not quinones they are unable to be reductively activated like doxorubicin and other anthracyclines and thus they should not be cardiotoxic. The concentration dependent increase in DNA melting temperature was used to determine the strength of DNA binding and the bisintercalation potential of the compounds. Compounds with more than a three-carbon linker that could span four DNA base pairs achieved bisintercalation. All of the bisanthrapyrazoles inhibited human erythroleukemic K562 cell growth in the low to submicromolar concentration range. They also strongly inhibited the decatenation activity of topoisomerase IIα and the relaxation activity of topoisomerase I. However, as measured by their ability to induce double strand breaks in plasmid DNA, the bisanthrapyrazole compounds did not act as topoisomerase IIα poisons. In conclusion, a novel group of bisanthrapyrazole compounds were designed, synthesized, and biologically evaluated as potential anticancer agents.  相似文献   

17.
A novel class of podophyllotoxin derivatives have been designed and synthesized based on the synergistic antitumor effects of topoisomerase II and histone deacetylase inhibitors. Their inhibitory activities towards histone deacetylases and Topo II and their cytotoxicities in cancer cell lines were evaluated. The aromatic capping group connection, linker length and zinc-binding group were systematically varied and preliminary conclusions regarding structure–activity relationships are discussed. Among all of the synthesized hybrid compounds, compound 24d showed the most potent HDAC inhibitory activity at a low nanomolar level and exhibited powerful antiproliferative activity towards HCT116 colon carcinoma cells at a low micromolar level. Further exploration of this series led to the discovery of potent dual inhibitor 32, which exhibited the strongest in vitro cytotoxic activity.  相似文献   

18.
19.
DNA topoisomerases play a pivotal role in the regulation of cell division. Inhibition of Leishmania spp. topoisomerases represents an alternative to control parasite growth. Cancer research led to the development of several potent topoisomerase inhibitors such as topoisomerase I, topoisomerase II, or both (monobenzimidazole, terbenzimidazole, and protoberberine alkaloid-related compounds) that are effective antitumor agents. In the present study, we evaluated the efficacy of these compounds against Leishmania spp. growth in vitro. Some protoberberine compounds showed pronounced antileishmanial activity and were selected for further analysis in macrophages. These compounds did not affect macrophage viability and only slightly reduced macrophage nitric oxide generation in response to interferon-gamma. Moreover, exposure of infected macrophages to these compounds significantly reduced parasite loads. Collectively, our data suggest that protoberberine-related compounds have powerful antileishmania action and that minor structural variations among them can substantially improve their activity to restrict Leishmania spp. infection in vitro.  相似文献   

20.
The paper describes synthesis of several novel thiosemicarbazone derivatives. Furthermore, crystal and molecular structure of 4-diethylamino-salicylaldehyde 4-phenylthiosemicarbazone revealed planarity of conjugated aromatic system, which suggested the possibility of DNA binding by intercalation, especially for here studied naphthalene derivatives. However, here presented DNA binding studies excluded this mode of action. Physicochemical and structural properties of novel derivatives were compared with previously studied analogues, taken as reference compounds, revealing distinctive differences. In addition, novel thiosemicarbazone derivatives (1, 2 and 5–8) clearly display stronger antiproliferative activity on five tumor cell lines than the reference compounds 3 and 4, which supports their further investigation as potential antitumor agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号