首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Kinase-catalyzed protein phosphorylation is involved in a wide variety of cellular events. Development of methods to monitor phosphoproteins in normal and diseased states is critical to fully characterize cell signaling. Towards phosphoprotein analysis tools, our lab reported kinase-catalyzed labeling where γ-phosphate modified ATP analogs are utilized by kinases to label peptides or protein substrates with a functional tag. In particular, the ATP-biotin analog was developed for kinase-catalyzed biotinylation. However, kinase-catalyzed labeling has been tested rigorously with only a few kinases, preventing use of ATP-biotin as a general tool. Here, biotinylation experiments, gel or HPLC-based quantification, and kinetic measurements indicated that twenty-five kinases throughout the kinome tree accepted ATP-biotin as a cosubstrate. With this rigorous characterization of ATP-biotin compatibility, kinase-catalyzed labeling is now immediately useful for studying phosphoproteins and characterizing the role of phosphorylation in various biological events.  相似文献   

2.
A novel electrochemical strategy for monitoring the activity and inhibition of T4 polynucleotide kinase (PNK) is developed by use of titanium ion (Ti(4+)) mediated signal transition coupled with signal amplification of single wall carbon nanotubes (SWCNTs). In this method, a DNA containing 5'-hydroxyl group is self-assembled onto the gold electrode and used as substrate for PNK. The biofunctionalized SWCNTs with anchor DNA and ferrocene are chosen as the signal indicator by virtue of the intrinsic 5'-phosphate end of anchor DNA and the high loading of ferrocene for electrochemical signal generation and amplification. The 5'-hydroxyl group of the substrate DNA on the electrode is phosphorylated by T4 PNK in the presence of ATP, and the resulting 5'-phosphoryl end product can be linked with the signal indicator by Ti(4+). The redox ferrocene group on the SWCNTs is grafted to the electrode and generates the electrochemical signal, the intensity of which is proportional to the activity of T4 PNK. This assay can measure activity of T4 PNK down to 0.01 UmL(-1). The developed method is a potentially useful tool in researching the interactions between proteins and nucleic acids and provides a diversified platform for a kinase activity assay.  相似文献   

3.
Ultraviolet light irradiation of DNA results in the formation of two major types of photoproducts, cyclobutane dimers and 6-4' [pyrimidin-2'-one] -pyrimidine photoproducts. The enzyme T4 DNA polymerase possesses a 3' to 5' exonuclease activity and hydrolyzes both single and double stranded DNA in the absence of deoxynucleotide triphosphate substrates. Here we describe the use of T4 DNA polymerase associated exonuclease for the detection and quantitation of UV light-induced damage on both single and double stranded DNA. Hydrolysis of UV-irradiated single or double stranded DNA by the DNA polymerase associated exonuclease is quantitatively blocked by both cyclobutane dimers and (6-4) photoproducts. The enzyme terminates digestion of UV-irradiated DNA at the 3' pyrimidine of both cyclobutane dimers and (6-4) photoproducts. For a given photoproduct site, the induction of cyclobutane dimers was the same for both single and double stranded DNA. A similar relationship was also found for the induction of (6-4) photoproducts. These results suggest that the T4 DNA polymerase proofreading activity alone cannot remove these UV photoproducts present on DNA templates, but instead must function together with enzymes such as the T4 pyrimidine dimer-specific endonuclease in the repair of DNA photoproducts. The T4 DNA polymerase associated exonuclease should be useful for the analysis of a wide variety of bulky, stable DNA adducts.  相似文献   

4.
Important and emerging trends at the interface of luminescence, nucleic acids and nanotechnology are: (i) the conventional luminescence labeling of nucleic acid nanostructures (e.g. DNA tetrahedron); (ii) the labeling of bulk nucleic acids (e.g. single‐stranded DNA, double‐stranded DNA) with nanostructured luminescent labels (e.g. copper nanoclusters); and (iii) the labeling of nucleic acid nanostructures (e.g. origami DNA) with nanostructured luminescent labels (e.g. silver nanoclusters). This review surveys recent advances in these three different approaches to the generation of nanostructured luminescently labeled nucleic acids, and includes both direct and indirect labeling methods.  相似文献   

5.
T4 phage polynucleotide kinase (PNK) was identified over 35 years ago and has become a staple reagent for molecular biologists. The enzyme displays 5'-hydroxyl kinase, 3'-phosphatase, and 2',3'-cyclic phosphodiesterase activities against a wide range of substrates. These activities modify the ends of nicked tRNA generated by a bacterial response to infection and facilitate repair by T4 RNA ligase. DNA repair enzymes that share conserved motifs with PNK have been identified in eukaryotes. PNK contains two functionally distinct structural domains and forms a homotetramer. The C-terminal phosphatase domain is homologous to the L-2-haloacid dehalogenase family and the N-terminal kinase domain is homologous to adenylate kinase. The active sites have been characterized through structural homology analyses and visualization of bound substrate.  相似文献   

6.
Mammalian polynucleotide kinases (PNKs) carry out 5'-phosphorylation of nucleic acids. Although the cellular function(s) of these enzymes remain to be delineated, important suggestions have included a role in DNA repair and, more recently, in DNA replication. Like T4 PNK, some preparations of mammalian PNKs have been reported to have an associated 3'-phosphatase activity. Previously, we have identified in calf thymus glands an apparently novel PNK with a neutral to alkaline pH optimum that lacked 3'-phosphatase activity. In this report, we describe purification of another bovine PNK, SNQI-PNK, with a slightly acidic pH optimum that copurifies with a 3'-phosphatase activity. The enzyme appears to be a monomer of 60 kDa. Mammalian DNA replication reactions were supplemented with T4 PNK or SNQI-PNK, and no significant effect on DNA replication in vitro was observed. Database searches support the earlier mapping of the 3'-phosphatase activity of T4 PNK to the C-terminus and suggest that the 3'-phosphatase domain of T4 PNK is related to the protein superfamily of L-2-haloacid dehalogenases. Exopeptidase digestion experiments were carried out to compare the SNQI-PNK enzyme with T4 PNK and led to the inference that the domain organization of the bovine polypeptide may differ from that of the T4 enzyme.  相似文献   

7.
Excision of uracil from tetraloop hairpins and single stranded ('unstructured') oligodeoxyribonucleotides by Escherichia coli uracil DNA glycosylase has been investigated. We show that, compared with a single stranded reference substrate, uracil from the first, second, third and the fourth positions of the loops is excised with highly variable efficiencies of 3.21, 0.37, 5.9 and 66.8%, respectively. More importantly, inclusion of E.coli single stranded DNA binding protein (SSB) in the reactions resulted in approximately 7-140-fold increase in the efficiency of uracil excision from the first, second or the third position in the loop but showed no significant effect on its excision from the fourth position. In contrast, the presence of SSB decreased uracil excision from the single stranded ('unstructured') substrates approximately 2-3-fold. The kinetic studies show that the increased efficiency of uracil release from the first, second and the third positions of the tetraloops is due to a combination of both the improved substrate binding and a large increase in the catalytic rates. On the other hand, the decreased efficiency of uracil release from the single stranded substrates ('unstructured') is mostly due to the lowering of the catalytic rates. Chemical probing with KMnO4showed that the presence of SSB resulted in the reduction of cleavage of the nucleotides in the vicinity of dUMP residue in single stranded substrates but their increased susceptibility in the hairpin substrates. We discuss these results to propose that excision of uracil from DNA-SSB complexes by uracil DNA glycosylase involves base flipping. The use of SSB in the various applications of uracil DNA glycosylase is also discussed.  相似文献   

8.
S-Adenosyl-l-methionine (AdoMet or SAM)-dependent methyltransferases (MTase) catalyze the transfer of the activated methyl group from AdoMet to specific positions in DNA, RNA, proteins and small biomolecules. This natural methylation reaction can be expanded to a wide variety of alkylation reactions using synthetic cofactor analogues. Replacement of the reactive sulfonium center of AdoMet with an aziridine ring leads to cofactors which can be coupled with DNA by various DNA MTases. These aziridine cofactors can be equipped with reporter groups at different positions of the adenine moiety and used for Sequence-specific Methyltransferase-Induced Labeling of DNA (SMILing DNA). As a typical example we give a protocol for biotinylation of pBR322 plasmid DNA at the 5’-ATCGAT-3’ sequence with the DNA MTase M.BseCI and the aziridine cofactor 6BAz in one step. Extension of the activated methyl group with unsaturated alkyl groups results in another class of AdoMet analogues which are used for methyltransferase-directed Transfer of Activated Groups (mTAG). Since the extended side chains are activated by the sulfonium center and the unsaturated bond, these cofactors are called double-activated AdoMet analogues. These analogues not only function as cofactors for DNA MTases, like the aziridine cofactors, but also for RNA, protein and small molecule MTases. They are typically used for enzymatic modification of MTase substrates with unique functional groups which are labeled with reporter groups in a second chemical step. This is exemplified in a protocol for fluorescence labeling of histone H3 protein. A small propargyl group is transferred from the cofactor analogue SeAdoYn to the protein by the histone H3 lysine 4 (H3K4) MTase Set7/9 followed by click labeling of the alkynylated histone H3 with TAMRA azide. MTase-mediated labeling with cofactor analogues is an enabling technology for many exciting applications including identification and functional study of MTase substrates as well as DNA genotyping and methylation detection.  相似文献   

9.
T Yagura  T Kozu    T Seno 《Nucleic acids research》1983,11(18):6369-6380
Mouse DNA replicase is a functional multienzyme complex consisting of DNA polymerase and DNA primase. The DNA and initiator RNA syntheses by DNA replicase with single stranded DNA as template are stimulated by a stimulating factor (T. Yagura, T. Kozu and T. Seno, 1982, J. Biochem. (Tokyo).91, 607-618). The action mechanism of the stimulating factor on this novel DNA synthesis with fd phage single stranded circular DNA as template was studied. The stimulating factor directly stimulated initiator RNA synthesis but did not change the length of either initiator RNA (8 to 10 nucleotides long) or the product DNA (300 to 1,000 nucleotides long). Kinetic studies and analysis of the products by neutral agarose gel electrophoresis show that the stimulating factor increased the affinity of DNA replicase for template DNA without changing the apparent Km values for deoxy- and ribonucleotide substrates. Thus, in combination with a sufficient amount of the stimulating factor, DNA replicase quantitatively converted the template DNA to the position of double-stranded circular replicative form II DNA, as shown by agarose gel electrophoresis.  相似文献   

10.
A DNA helicase from calf thymus, called DNA helicase F, copurified with replication protein A through several steps of purification including DEAE-Sephacel, hydroxyapatite and single stranded DNA cellulose. It is finally separated from replication protein A on FPLC Mono Q where the DNA helicase elutes after replication protein A. Characterization of the DNA helicase F by affinity labeling with [alpha 32P]ATP indicated that the enzyme has a catalytic subunit of 72 kDa. Gel filtration experiments suggested that DNA helicase F can exist both in a monomeric and an oligomeric form. The enzyme unwinds DNA in the 5'-->3' direction in relation to the strand it binds. All eight deoxyribonucleoside- and ribonucleosidetriphosphates could serve as an energy source. Testing a variety of DNA/DNA substrates demonstrated that the DNA helicase F preferentially unwinds very short substrates and is slightly stimulated by a single stranded 3'-tail. However, replication protein A allowed the DNA helicase to unwind much longer DNA substrates of up to 400 bases, indicating that the copurification of replication protein A with the DNA helicase F might be of functional relevance.  相似文献   

11.
Chemical protein biotinylation and streptavidin or anti‐biotin‐based capture is regularly used for proteins as a more controlled alternative to direct coupling of the protein on a biosensor surface. On biotinylation an interaction site of interest may be blocked by the biotin groups, diminishing apparent activity of the protein. Minimal biotinylation can circumvent the loss of apparent activity, but still a binding site of interest can be blocked when labeling an amino acid involved in the binding. Here, we describe reaction condition optimization studies for minimal labeling. We have chosen low affinity Fcγ receptors as model compounds as these proteins contain many lysines in their active binding site and as such provide an interesting system for a minimal labeling approach. We were able to identify the most critical parameters (protein:biotin ratio and incubation pH) for a minimal labeling approach in which the proteins of choice remain most active toward analyte binding. Localization of biotinylation by mass spectrometric peptide mapping on minimally labeled material was correlated to protein activity in binding assays. We show that only aiming at minimal labeling is not sufficient to maintain an active protein. Careful fine‐tuning of critical parameters is important to reduce biotinylation in a protein binding site.  相似文献   

12.
Sensitive and reliable study of the activity of polynucleotide kinase (PNK) and its potential inhibitors is of great importance for biochemical interaction related to DNA phosphorylation as well as development of kinase-targeted drug discovery. To achieve facile and reliable detection of PNK activity, we report here a novel fluorescence method for PNK assay based on a combination of exonuclease cleavage reaction and photo-induced electron transfer (PIET) by using T4 PNK as a model target. The fluorescence of 3′-carboxyfluorescein-labeled DNA probe (FDNA) is effectively quenched by deoxyguanosines at the 5′ end of its complementary DNA (cDNA) due to an effective PIET between deoxyguanosines and fluorophore. Whereas FDNA/cDNA hybrid is phosphorylated by PNK and then immediately cleaved by lambda exonuclease (λ exo), fluorescence is greatly restored due to the break of PIET. This homogeneous PNK activity assay does not require a complex design by taking advantage of the quenching ability of deoxyguanosines, making the proposed strategy facile and cost-effective. The activity of PNK can be sensitively detected in the range of 0.005 to 10 U mL−1 with a detection limit of 2.1 × 10−3 U mL−1. Research on inhibition efficiency of different inhibitors demonstrated that it can be explored to evaluate inhibition capacity of inhibitors. The application for detection of PNK activity in complex matrix achieved satisfactory results. Therefore, this PIET strategy opens a promising avenue for studying T4 PNK activity as well as evaluating PNK inhibitors, which is of great importance for discovering kinase-targeted drugs.  相似文献   

13.
The efficient repair of double-strand breaks (DSBs) in DNA is critical for the maintenance of genome stability. In mammalian cells, repair can occur by homologous recombination or by non-homologous end joining (NHEJ). DNA breaks caused by reactive oxygen or ionizing radiation often contain non- conventional end groups that must be processed to restore the ligatable 3'-OH and 5'-phosphate moieties which are necessary for efficient repair by NHEJ. Here, using cell-free extracts that efficiently catalyse NHEJ in vitro, we show that human polynucleotide kinase (PNK) promotes phosphate replacement at damaged termini, but only within the context of the NHEJ apparatus. Phosphorylation of terminal 5'-OH groups by PNK was blocked by depletion of the NHEJ factor XRCC4, or by an inactivating mutation in DNA-PK(cs), indicating that the DNA kinase activity in the extract is coupled with active NHEJ processes. Moreover, we find that end-joining activity can be restored to PNK-depleted extracts by addition of human PNK, but not bacteriophage T4 PNK. This work provides the first demonstration of a direct, specific role for human PNK in DSB repair.  相似文献   

14.
The response of eukaryotic cells to DNA damage requires a multitude of protein-protein interactions that mediate the ordered repair of the damage and the arrest of the cell cycle until repair is complete. Two conserved protein modules, BRCT and forkhead-associated (FHA) domains, play key roles in the DNA-damage response as recognition elements for nuclear Ser/Thr phosphorylation induced by DNA-damage-responsive kinases. BRCT domains, first identified at the C-terminus of BRCA1, often occur as multiple tandem repeats of individual BRCT modules. Our recent structural and functional work has revealed how BRCT repeats recognize phosphoserine protein targets. It has also revealed a secondary binding pocket at the interface between tandem repeats, which recognizes the amino-acid 3 residues C-terminal to the phosphoserine. We have also studied the molecular function of the FHA domain of the DNA repair enzyme, polynucleotide kinase (PNK). This domain interacts with threonine-phosphorylated XRCC1 and XRCC4, proteins responsible for the recruitment of PNK to sites of DNA-strand-break repair. Our studies have revealed a flexible mode of recognition that allows PNK to interact with numerous negatively charged substrates.  相似文献   

15.
T4 phage polynucleotide kinase (PNK) displays 5′-hydroxyl kinase, 3′-phosphatase and 2′,3′-cyclic phosphodiesterase activities. The enzyme phosphorylates the 5′ hydroxyl termini of a wide variety of nucleic acid substrates, a behavior studied here through the determination of a series of crystal structures with single-stranded (ss)DNA oligonucleotide substrates of various lengths and sequences. In these structures, the 5′ ribose hydroxyl is buried in the kinase active site in proper alignment for phosphoryl transfer. Depending on the ssDNA length, the first two or three nucleotide bases are well ordered. Numerous contacts are made both to the phosphoribosyl backbone and to the ordered bases. The position, side chain contacts and internucleotide stacking interactions of the ordered bases are strikingly different for a 5′-GT DNA end than for a 5′-TG end. The base preferences displayed at those positions by PNK are attributable to differences in the enzyme binding interactions and in the DNA conformation for each unique substrate molecule.  相似文献   

16.
Two novel photolabile nucleotide triphosphate (NTP) analogues were synthesized through Sonogashira coupling and their enzymatic incorporation into DNA was evaluated with three different DNA polymerases (Taq, Vent exo- and T4) by polymerase chain reaction. Both nucleotide triphosphate analogues were recognized by these DNA polymerases as substrates for primer extension. Light irradiation of PCR products removed the photolabile group and released the amino and carboxyl moieties. Further site-specific dual-labeling for oligodeoxynucleotides (ODNs) and random labeling for a long DNA construct with fluorophores were successfully achieved with incorporation of the photolabile amine modified deoxyuridine triphosphate (dUnTP).  相似文献   

17.
A rapid batch procedure is described for purification of T4 polynucleotide kinase (ATP:5'-dephosphopolynucleotide 5'-phosphotransferase, EC 2.7.1.78) to near homogeneity using Blue Dextran-Sepharose chromatography. The enzyme preparation is sufficiently free of contaminating endonuclease and alkaline phosphatase activities to be suitable for radioactively labeling nucleic acids in vitro. Kinetic measurements indicate that the chromophore of Blue Dextran, Cibacron Blue F3GA, inhibits the activity of T4 polynucleotide kinase competitively with respect to single stranded DNA substrate and non-competitively with respect to the rATP substrate.  相似文献   

18.
Summary Recombination of T4 phage is not controlled by the host recA gene but by an analogous phage gene, uvsX. We have tested the hypothesis that recA protein is inactive in T4-infected cells because it is unable to catalyze reactions involving single stranded DNA containing glucosyl-hydroxylmethyl-deoxycytidine. We found, however, that with modified and unmodified deoxycytidine containing DNAs, uvsX protein and recA protein catalyze in vitro reactions related to DNA recombination, but in T4-infected cells recA protein fails to promote strand transfer of DNA which contains unmodified deoxycytidine.Abbreviations dC-DNA deoxycytidine containing DNA - dC-T4 T4 phage containing dC-DNA - dHMC-DNA glucosyl-hydroxymethyl-deoxycytidine containing DNA - dsDNA double stranded DNA - gp gene product - ssDNA single stranded DNA  相似文献   

19.
Folding of DNA into chromatin is mediated by binding to histones such as H4; association of DNA with histones is regulated by covalent histone modifications, e.g. acetylation, methylation, and biotinylation. We sought to identify amino-acid residues that are biotinylated in histone H4, and to determine whether acetylation and methylation of histones affect biotinylation. Synthetic peptides spanning fragments of human histone H4 were biotinylated enzymatically using biotinidase. Peptide-bound biotin was probed with streptavidin-peroxidase. Peptides based on the N-terminal sequence of histone H4 were effectively recognized by biotinidase as substrates for biotinylation; in contrast, peptides based on the C-terminal sequences were not biotinylated. Substitution of K8 or K12 with alanine or arginine decreased biotinylation, suggesting that these lysines are targets for biotinylation; K8 and K12 are also known targets for acetylation. Chemical acetylation or methylation of a given lysine decreased subsequent enzymatic biotinylation of neighboring lysines, consistent with cross-talk among histone modifications. Substitution of a given lysine (positive charge) with glutamate (negative charge) abolished biotinylation of neighboring lysines, providing evidence that the net charge of histones has a role in biotinylation. An antibody was generated that specifically recognized histone H4 biotinylated at K12. This antibody was used to detect biotinylated histone H4 in nuclear extracts from human cells. These studies suggest that K8 and K12 in histone H4 are targets for biotinylation, that acetylation and biotinylation compete for the same binding sites, and that acetylation and methylation of histones affect biotinylation of neighboring lysines.  相似文献   

20.
原核表达、纯化T4多聚核苷酸激酶,并尝试将纯化的T4 PNK用于短探针序列的连接。本研究以合成的pseT基因为模板,PCR扩增出带有NdeⅠ和Bam HⅠ位点的目的片段,构建pseT-pET-15b原核表达载体,并转入E. coli ER2566中诱导表达。Ni-Agarose亲和层析柱纯化重组蛋白后,再进行Western blot鉴定。用纯化后再浓缩的T4 PNK参与探针连接反应,并设置商品T4 PNK和阴性对照。PCR扩增成功获得大于900 bp的目的基因片段,原核表达载体pseT-pET-15b构建成功,经诱导表达的重组蛋白分子量大小约为35 kD,Western blotting确认蛋白表达正确,浓缩后的蛋白浓度达到826μg/m L。电泳结果显示,重组T4 PNK在探针连接中效果较好。本研究成功表达并纯化了可溶性的T4多聚核苷酸激酶,且具有较好的活性,该蛋白可进一步用于后续大批量探针连接反应或其他相关研究,具有一定实际应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号