首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of acetophenone derivatives (10a10i, 11, 12a12g, 13a13g, 14a14d and 15a15l) were designed, synthesized and evaluated for antifungal activities in vitro and in vivo. The antifungal activities of 53 compounds were tested against several plant pathogens, and their structure–activity relationship was summarized. Compounds 10a10f displayed better antifungal effects than two reference fungicides. Interestingly, the most potent compound 10d exhibited antifungal properties against Cytospora sp., Botrytis cinerea, Magnaporthe grisea, with IC50 values of 6.0–22.6?µg/mL, especially Cytospora sp. (IC50?=?6.0?µg/mL). In the in vivo antifungal assays, 10d displayed the significant protective efficacy of 55.3% to Botrytis cinerea and 73.1% to Cytospora sp. The findings indicated that 10d may act as a potential pesticide lead compound that merits further investigation.  相似文献   

2.
To study the novel functionalized heterocyclic molecules with highly potential biological activity, two series of heterocyclic lactam derivatives containing the piperonyl moiety were designed and synthesized. The newly obtained compounds have been identified on the basis of analytical spectral data, including 1H NMR, 13C NMR, and ESI-MS. The target compounds were evaluated for their potential antifungal activities in vitro against twelve species of the plant pathogen fungi (Sclerotinia sclerotiorum, Rhizoctonia solani, Rap Sclerotinia stemrot, Fusarium graminearum, Phomopsis adianticola, Pestallozzia theae, Pestalotiopsis guepinii, Alternaria tenuis Nees, Monilinia fructicola, Colletotrichum gloeosporioides, Phytophthora capsici, Magnaporthe oryzae). Preliminary bioassays suggested that all prepared compounds I114 displayed broad-spectrum and moderate antifungal activities compared with the positive control hymexazol, especially for Sclerotinia sclerotiorum, Rap Sclerotinia stemrot, and Monilinia fructicola. In particular, the inhibition rate of compound I9 exhibited good inhibition activity reached 95.16% against Sclerotinia sclerotiorum, and compounds I5, I12 against Phytophthora capsici were 93.44%, 91.25%. Further studies revealed that compounds I5 (IC50 = 19.13 µM) and I12 (IC50 = 9.12 µM) exhibited obviously antifungal activities against Phytophthora capsici, which were better than that of commercial agricultural fungicide hymexazol (IC50 = 325.45 µM). Therefore, these target compounds could be further studied and explored as a lead skeleton for discovery of novel antifungal agents.  相似文献   

3.
In the present investigation, new chloroquinoline derivatives bearing vinyl benzylidene aniline substituents at 2nd position were synthesized and screed for biofilm inhibitory, antifungal and antibacterial activity. The result of biofilm inhibition of C. albicans suggested that compounds 5j (IC50 value?=?51.2?μM) and 5a (IC50 value?=?66.2?μM) possess promising antibiofilm inhibition when compared with the standard antifungal drug fluconazole (IC50?=?40.0?μM). Two compounds 5a (MIC?=?94.2?μg/mL) and 5f (MIC?=?98.8?μg/mL) also exhibited good antifungal activity comparable to standard drug fluconazole (MIC?=?50.0?μg/mL). The antibacterial screening against four strains of bacteria viz. E. coli, P. aeruginosa, B. subtilis, and S. aureus suggested their potential antibacterial activity and especially all the compounds except 5g were found more active than the standard drug ciprofloxacin against B. subtilis. To further gain insights into the possible mechanism of these compounds in biofilm inhibition through the agglutinin like protein (Als), molecular docking and molecular dynamics simulation studies were carried out. Molecular modeling studies suggested the clear role in inhibition of this protein and the resulting biofilm inhibitory activity.  相似文献   

4.
In search for SDHIs fungicides, twenty-five novel carboxamides containing a chalcone scaffold were designed, synthesized, and evaluated for antifungal activities against five pathogenic fungi. The results showed that compound 5 k exhibited outstanding antifungal activity against R. solani with an EC50 value of 0.20 μg/mL, which was much better than that of commercial SDHIs Boscalid (EC50=0.74 μg/mL). Moreover, compound 5 k also displayed promising antifungal activities against S. sclerotiorum, B. cinerea, and A. alternate (IC50=2.53–4.06 μg/mL), indicating that 5 k had broad-spectrum antifungal activity. Additionally, in vivo antifungal activities results showed that 5 k could significantly inhibit the growth of R. solani in rice leaves with good protective efficacy (57.78 %) and curative efficacy (58.45 %) at 100 μg/mL, both of which were much better than those of Boscalid, indicating a promising application prospect. Moreover, SEM analysis showed that compound 5 k could remarkably disrupt the typical structure and morphology of R. solani hyphae. Further SDH enzyme inhibition assay and molecular docking study revealed that lead compound 5 k had a similar mechanism of action as commercial SDHI Boscalid. These results indicated that compound 5 k showed potential as a SDHIs fungicide and deserved further investigation.  相似文献   

5.
Nigrosphaerin A, a new isochromene derivative (1), was isolated from the endophytic fungus Nigrospora sphaerica and chemically identified as 3-(3,4-dihydroxyphenyl)-4,6,8-trihydroxy-1H-isochromen-1-one-6-O-β-d-glucopyranoside. In addition nineteen known compounds (220) were isolated from the same fungus and chemically identified. Compounds (13, 5, and 716) were isolated for the first time from this fungus. In vitro antileukemic, antileishmanial, antifungal, antibacterial and antimalarial activities of (120) were examined. Compounds 5, 7, 9 and 10 showed good antileukemic activity against HL60 cells with IC50 values of 0.03, 0.39, 0.2 and 0.4 μg/mL, respectively and against K562 cells with IC50 values of 0.35, 0.35, 0.49 and 0.01 μg/mL, respectively. Compounds 3, 4 and 6 showed moderate antileishmanial activity with IC50 values of 30.2, 26.4 and 36.4 μg/ml, respectively. Compound 7 showed moderate antifungal activity against Cryptococcus neoformans with IC50 value of 14.8 μg/mL.  相似文献   

6.
In this paper, the nitrogen atom was inserted into the anthracycline system of the isocryptolepine nucleus to obtain the “Aza”-type structure benzo[4,5]imidazo[1,2-c] quinazoline. A series of “Aza”-type derivatives were designed, synthesized and evaluated for their antifungal activity against six plant fungi in vitro. Among all derivatives, compounds A-0, B-1 and B-2 showed significant antifungal activity against B. cinerea with the EC50 values of 2.72 μg/mL, 5.90 μg/mL and 4.00 μg/mL, respectively. Compound A-2 had the highest activity against M. oryzae with the EC50 values of 8.81 μg/mL, and compound A-1 demonstrated the most control efficacy against R. solani (EC50, 6.27 μg/mL). Moreover, compound A-0 was selected to investigate the in vivo tests against B. cinerea and the results indicated that the preventative efficacy of it up to 72.80% at 100 μg/mL. Preliminary mechanism studies revealed that after treatment with A-0 at 5 µg/mL, the B. cinerea mycelia appeared curved, collapsed and the cell membrane integrity may be damaged. The reactive oxygen species production, mitochondrial membrane potential and nuclear morphometry of mycelia have been changed, and the membrane function and cell proliferation of mycelia were destroyed. Compounds A-0, A-1, B-1 and B-2 presented weaker toxicities against two cells lines than isocryptolepine. This study lays the foundation for the future development of isocryptolepine derivatives as environmentally friendly and safe agricultural fungicides.  相似文献   

7.
A series of benzotriazole-azo-phenol/aniline derivatives were prepared and evaluated for their antifungal activities against six phytopathogenic fungi such as Fusarium graminearum, Fusarium solani, Alternaria alternate, Valsa mali, Botrytis cinerea, and Curvularia lunata. Among them, compounds IIf, IIn, and IIr showed a broad-spectrum of potent antifungal activities. Especially some compounds displayed 3.5–10.8 folds more potent activities than carbendazim against A. alternata and C. lunata. Notably, compounds IIc, IIm, and IIr exhibited good protective and therapeutic effects against B. cinerea at 200?μg/mL. Their structure-activity relationships were also discussed.  相似文献   

8.
One new pyrrolidine derivative, asperidine A (1), and two new piperidine derivatives, asperidines B (2) and C (3), were isolated from the soil-derived fungus Aspergillus sclerotiorum PSU-RSPG178 together with two known alkaloids. Compound 3 possessed an unprecedented 7-oxa-1-azabicyclo[3.2.1]octane skeleton with four chiral centers. Their structures were determined by spectroscopic evidence. The absolute configurations of compounds 2 and 3 were established using Mosher’s method and further confirmed for compound 3 by X-ray crystallographic data. Compound 2 dose-dependently inhibited the CFTR-mediated chloride secretion in T84 cells with an IC50 value of 0.96?μM whereas 3 displayed the same activity with the IC50 value of 58.62?μM. Compounds 2 and 3 also significantly reduced intracellular ROS under both normal and H2O2-treated conditions compared with their respective controls in a dose-dependent manner without cytotoxic effect on Caco-2 cells. In addition, compound 3 was inactive against noncancerous Vero cells whereas compound 2 was considered to be inactive with the IC50 value of >10?μM.  相似文献   

9.
Two new butyrolactones: aspernolides F (6) and G (7), together with three stigmasterol derivatives: (22E,24R)-stigmasta-5,7,22-trien-3-β-ol (1), stigmast-4-ene-3-one (2), and stigmasta-4,6,8(14), 22-tetraen-3-one (3), two meroterpenoids: terretonin A (4) and terretonin (5), and a butyrolactone derivative: butyrolactone VI (8) have been isolated from the endophytic fungus Aspergillus terreus isolated from the roots of Carthamus lanatus (Asteraceae). Their structures were determined by spectroscopic means (1D, 2D NMR, and HRESIMS), as well as optical rotation measurement and comparison with literature data. The isolated compounds were evaluated for their anti-microbial, anti-malarial, anti-leishmanial, and cytotoxic activities. Compound 1 displayed a potent activity against MRSA and C. neoformans with IC50 values of 0.96 μg/mL and 4.38 μg/mL, respectively compared to ciprofloxacin (IC50 0.07 μg/mL) and amphotericin B (IC50 0.34 μg/mL), respectively. While, 6 showed good activity against C. neoformans (IC50 5.19 μg/mL) and mild activity against MRSA (IC50 6.39 μg/mL). Moreover, 1 and 2 exhibited very good anti-leishmanial activity towards L. donovani with IC50 values of 4.61 and 6.31 μg/mL, respectively and IC90 values of 6.02 and 16.71 μg/mL, respectively.  相似文献   

10.
An efficient, one-pot multicomponent reaction of novel pyrazolo-oxothiazolidine derivatives was achieved by condensation of 1-(benzofuran-2-yl)-3-(substituted-arylprop-2-en-1-ones, thiosemicarbazide and dialkyl acetylenedicarboxylates under the optimized reaction conditions. Synthesised compounds were evaluated for their antiproliferative activity against A549 human lung cancer cell line. Among all the tested compounds, 4a (IC50 – 0.930?μg/mL), 4e (IC50 – 1.207?μg/mL), 4f (IC50 – 0.808?μg/mL), 4g (IC50 – 1.078?μg/mL), 4h (IC50 – 0.967?μg/mL) and 4j (IC50 – 2.445?μg/mL) showed promising activity compared with standard drug Sorafenib (IC50 – 3.779?μg/mL). Molecular docking studies indicated that compound 4f had the greatest affinity for catalytic site of receptors EGFR (PDB ID code: 1?M17) and VEGFR2 (PDB ID code: 4AGD, 4ASD). These novel pyrazolo-oxothiazolidine derivatives can be promising therapeutic agents for A549 human lung cancer cell line.  相似文献   

11.
A new set of 4-phenylcoumarin derivatives was designed and synthesized aiming to introduce new tubulin polymerization inhibitors as anti-breast cancer candidates. All the target compounds were evaluated for their cytotoxic effects against MCF-7 cell line, where compounds 2f, 3a, 3b, 3f, 7a and 7b, showed higher cytotoxic effect (IC50?=?4.3–21.2?μg/mL) than the reference drug doxorubicin (IC50?=?26.1?μg/mL), additionally, compounds 1 and 6b exhibited the same potency as doxorubicin (IC50?=?25.2 and 28.0?μg/mL, respectively). The thiazolidinone derivatives 3a, 3b and 3f with potent and selective anticancer effects towards MCF-7 cells (IC50?=?11.1, 16.7 and 21.2?μg/mL) were further assessed for tubulin polymerization inhibition effects which showed that the three compounds were potent tubulin polymerization suppressors with IC50 values of 9.37, 2.89 and 6.13?μM, respectively, compared to the reference drug colchicine (IC50?=?6.93?μM). The mechanistic effects on cell cycle progression and induction of apoptosis in MCF-7 cells were determined for compound 3a due to its potent and selective cytotoxic effects in addition to its promising tubulin polymerization inhibition potency. The results revealed that compound 3a induced cell cycle cessation at G2/M phase and accumulation of cells in pre-G1 phase and prevented its mitotic cycle, in addition to its activation of caspase-7 mediating apoptosis of MCF-7 cells. Molecular modeling studies for compounds 3a, 3b and 3f were carried out on tubulin crystallography, the results indicated that the compounds showed binding mode similar to the co-crystalized ligand; colchicine. Moreover, pharmacophore constructed models and docking studies revealed that thiazolidinone, acetamide and coumarin moieties are crucial for the activity. Molecular dynamics (MD) studies were carried out for the three compounds over 100?ps. MD results of compound 3a showed that it reached the stable state after 30?ps which was in agreement with the calculated potential and kinetic energy of compound 3a.  相似文献   

12.
Sixteen novel pyrazole carboxamides with diarylamines scaffold were designed, synthesized and characterized in detail via 1H NMR, 13C NMR and ESI-HRMS. Preliminary bioassays showed that some of the target compounds exhibited good antifungal activity against Rhizoctonia solani, Fusarium oxysporum, Phytophthora infestans and Fusarium graminearum. Among them, compound 1c exhibited the highest antifungal activities against R. solani in vitro with EC50 value of 0.005?mg/L, superior to the commercially available fungicide fluxapyroxad (EC50?=?0.033?mg/L). And compound 1c (IC50?=?0.034?mg/L) showed higher inhibition abilities against succinate dehydrogenase than fluxapyroxad (IC50?=?0.037?mg/L). This study suggests that compound 1c could be regarded as a potential succinate dehydrogenase inhibitor.  相似文献   

13.
A series of bezofuran appended 1,5-benzothiazepine compounds 7a–v was designed, synthesized and evaluated as cholinesterase inhibitors. The biological assay experiments showed that most of the compounds displayed a clearly selective inhibition for butyrylcholinesterase (BChE), while a weak or no effect towards acetylcholinesterase (AChE) was detected. All analogs exhibited varied BChE inhibitory activity with IC50 value ranging between 1.0?±?0.01 and 72?±?2.8?μM when compared with the standard donepezil (IC50, 2.63?±?0.28?μM). Among the synthesized derivatives, compounds 7l, 7m and 7k exhibited the highest BChE inhibition with IC50 values of 1.0, 1.0 and 1.8?μM, respectively. The results from a Lineweaver-Burk plot indicated a mixed-type inhibition for compound 7l with BChE. In addition, docking studies confirmed the results obtained through in vitro experiments and showed that most potent compounds bind to both the catalytic anionic site (CAS) and peripheral anionic site (PAS) of BChE active site. The synthesized compounds were also evaluated for their in vitro antibacterial and antifungal activities. The results indicated that the compounds possessed a broad spectrum of activity against the tested microorganisms and showed high activity against both gram positive and gram negative bacteria and fungi.  相似文献   

14.
Abietic and dehydroabietic acid are interesting diterpenes with a highly diverse repertoire of associated bioactivities. They have, among others, shown antibacterial and antifungal activity, potentially valuable in the struggle against the increasing antimicrobial resistance and imminent antibiotic shortage. In this paper, we describe the synthesis of a set of 9 abietic and dehydroabietic acid derivatives containing amino acid side chains and their in vitro antimicrobial profiling against a panel of human pathogenic microbial strains. Furthermore, their in vitro cytotoxicity against mammalian cells was evaluated. The experimental results showed that the most promising compound was 10 [methyl N-(abiet-8,11,13-trien-18-yl)-d-serinate], with an MIC90 of 60 μg/mL against Staphylococcus aureus ATCC 25923, and 8 μg/mL against methicillin-resistant S. aureus, Staphylococcus epidermidis and Streptococcus mitis. The IC50 value for compound 10 against Balb/c 3T3 cells was 45 μg/mL.  相似文献   

15.
In our ongoing effort of discovering anticancer and chemopreventive agents, a series of 2-arylindole derivatives were synthesized and evaluated toward aromatase and quinone reductase 1 (QR1). Biological evaluation revealed that several compounds (e.g., 2d, IC50?=?1.61?μM; 21, IC50?=?3.05?μM; and 27, IC50?=?3.34?μM) showed aromatase inhibitory activity with half maximal inhibitory concentration (IC50) values in the low micromolar concentrations. With regard to the QR1 induction activity, 11 exhibited the highest QR1 induction ratio (IR) with a low concentration to double activity (CD) value (IR?=?8.34, CD?=?2.75?μM), while 7 showed the most potent CD value of 1.12?μM. A dual acting compound 24 showed aromatase inhibition (IC50?=?9.00?μM) as well as QR1 induction (CD?=?5.76?μM) activities. Computational docking studies using CDOCKER (Discovery Studio 3.5) provided insight in regard to the potential binding modes of 2-arylindoles within the aromatase active site. Predominantly, the 2-arylindoles preferred binding with the 2-aryl group toward a small hydrophobic pocket within the active site. The C-5 electron withdrawing group on indole was predicted to have an important role and formed a hydrogen bond with Ser478 (OH). Alternatively, meta-pyridyl analogs may orient with the pyridyl 3′-nitrogen coordinating with the heme group.  相似文献   

16.
A series of (E)-N-Aryl-2-oxo-2-(3,4,5-trimethoxyphenyl)acetohydrazonoyl cyanides have been synthesized and evaluated for their anticancer activity in human hepatocellular liver carcinoma HepG2 and breast adenocarcinoma MCF-7?cell lines. Among all the tested compounds, compound 3a, 3e and 3n displayed more activity than lead compound with IC50 value of 0.26–0.61?μM. Meanwhile, these compounds (3a, 3e and 3n) showed potent antiproliferative activity against a panel of cancer cells and the HCT-8/T multidrug resistant cell line with IC50 values in the range of 0.077– 7.44?μM. Flow cytometric analyses revealed that compound 3n induced cell cycle arrest in G2/M phases in a dose dependent manner. The compound 3n also displayed potent tubulin polymerization inhibition with an IC50 value of 0.9?µM, with ten folds more active than colchicine (IC50?=?9?μM). Molecular docking studies revealed that compound 3n efficiently interacted with the colchicine binding site of tubulin through hydrophobic, cation-π and hydrogen bond interaction. Furthermore, in silico pharmacokinetic prediction shown that these compounds have a good ADME-related physicochemical parameters. These results demonstrate that 3n exhibits potent cytotoxicity in cancer cells by targeting the colchicine binding site of tubulin and potentially acts as a therapeutic lead compound for the development of anticancer drugs.  相似文献   

17.
A new concise and facile method was explored to synthesize a series of novel chalcone derivatives containing a purine and benzenesulfonamide moiety and their antiviral properties were evaluated against TMV and CMV. Biological assays indicated that several of the derivatives exhibited significant anti-TMV and anti-CMV activities in vivo. In particular, compound d2 displayed excellent inactivating activity against TMV, with the EC50 value of 51.65?μg/mL, which was better than that of ribavirin (150.45?μg/mL). Molecular docking showed that there are four hydrogen bonds between compound d2 and TMV coat protein (TMV-CP). Compound d2 demonstrated strong binding capacity to TMV-CP with Ka?=?1.58?×?105?L/mol and Kd?=?12.16?μM. These findings indicated that chalcone derivatives are worthy of further research and development as templates for new antiviral agents.  相似文献   

18.
In continuation of our program to discover new potential antifungal agents, a series of amide and imine derivatives containing a kakuol moiety were synthesized and characterized by the spectroscopic analysis. By using the mycelium growth rate method, the target compounds were evaluated systematically for antifungal activities in vitro against four plant pathogenic fungi, and structure–activity relationships (SAR) were derived. Compounds 7d, 7e, 7h, 7i and 7r showed obvious inhibitory activity against the corresponding tested fungi at 50 μg/mL. Especially, compounds 7e and 7r displayed more potent antifungal activity against B. cinerea than that of thiabendazole (a positive control). Moreover, compound 7e also exhibited good activity against A. alternata with EC50 values of 11.0 µg/mL, and the value was slightly superior to that of thiabendazole (EC50 = 14.9 µg/mL). SAR analysis showed that the ether group was a highly sensitive structural moiety to the activity and the type as well as position of substituents on benzene ring could make some effects on the activity.  相似文献   

19.
To discover novel laccase inhibitors as potential fungicides, twenty-six novel L-menthol hydrazide derivatives were designed and synthesized. In the in vitro antifungal assay, most of the target compounds displayed pronounced antifungal activity against Sclerotinia sclerotiorum, Fusarium graminearum, and Botryosphaeria dothidea. Especially, the EC50 of compounds 3 b and 3 q against B. dothidea was 0.465 and 0.622 mg/L, which was close to the positive compound fluxapyroxad (EC50=0.322 mg/L). Scanning electron microscopy (SEM) analysis showed that compound 3 b could significantly damage the mycelial morphology of B. dothidea. In vivo antifungal experiments on apple fruits showed that 3 b exhibited excellent protective and curative effects. Furthermore, in the in vitro laccase inhibition assay, 3 b showed outstanding inhibitory activity with the IC50 value of 2.08 μM, which is much stronger than positive control cysteine and PMDD-5Y. These results indicated that this class of L-menthol derivatives could be promising leads for the discovery of laccase-targeting fungicides.  相似文献   

20.
Propolis is rich in diverse bioactive compounds. Propolis samples were collected from three localities of Cameroon and used in the study. Column chromatography separation of propolis MeOH:DCM (50:50) extracts yielded a new isoflavonol, 2-hydroxy-8-prenylbiochanin A (1) alongside 2′,3′-dihydroxypropyltetraeicosanoate (2) and triacontyl p-coumarate (3) isolated from propolis for first time together with seven compounds: β-amyrine (4), oleanolic acid (5), β-amyrine acetate (6), lupeol (7), betulinic acid (8), lupeol acetate (9) and lupenone (10). These compounds were tested for their inhibitory effect on oxidative burst where intracellular reactive oxygen species (ROS) were produced from zymosan stimulated human whole blood phagocytes and on production of nitric oxide (NO) from lipopolysaccharide (LPS) stimulated J774.2 mouse macrophages. The cytotoxicity of these compounds was evaluated on NIH-3 T3 normal mouse fibroblast cells, antiradical potential on 2,2-diphenyl-1-picrylhydrazylhydrazyl (DPPH·) as well as their anti-yeast potential on four selected candida species. Compound 1 showed higher NO inhibition (IC50 = 23.3 ± 0.3 µg/mL) than standard compound L-NMMA (IC50 = 24.2 ± 0.8 µg/mL). Higher ROS inhibition was shown by compounds 6 (IC50 = 4.3 ± 0.3 µg/mL) and 9 (IC50 = 1.1 ± 0.1 µg/mL) than Ibuprofen (IC50 = 11.2 ± 1.9 µg/mL). Furthermore, compound 1 displayed moderate level of cytotoxicity on NIH-3 T3 cells, with IC50 = 5.8 ± 0.3 µg/mL compared to the cyclohexamide IC50 = 0.13 ± 0.02 µg/mL. Compound 3 showed lower antifungal activity on Candida krusei and Candida glabrata, MIC of 125 μg/mL on each strain compared to 50 μg/mL for fuconazole. The extracts showed low antifungal activities ranging from 250 to 500 μg/mL on C. albicans, C. krusei and C. glabrata and the values of MIC on Candida parapsilosis were 500 μg/mL and above. DPPH* scavenging activity was exhibited by compounds 1 (IC50 = 15.653 ± 0.335 μg/mL) and 3 (IC50 = 89.077 ± 24.875 μg/mL) compared to Vitamin C (IC50 = 3.343 ± 0.271 μg/mL) while extracts showed moderate antiradical activities with IC50 values ranging from 309.31 ± 2.465 to 635.52 ± 11.05 µg/mL. These results indicate that compounds 1, 6 and 9 are potent anti-inflammatory drug candidates while 1 and 3 could be potent antioxidant drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号