首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemotherapy is one of the major forms of cancer treatment. Unfortunately, tumors are prone to multidrug resistance leading to failure of treatment. Breast cancer resistance protein (BCRP), the second member of ABC transporter subfamily G, has been found to play a major role in drug efflux and hence multidrug resistance. Until now, very few potent and selective BCRP inhibitors like Ko143 have been identified. In the search for more potent and selective BCRP inhibitors, we synthesized and investigated a series of differently substituted quinazoline compounds. Several variations at positions 2, 4, 6 and 7 of the quinazoline scaffold were carried out to develop a structure–activity-relationship analysis for these compounds. It was found that compounds bearing a phenyl substituent at position 2 of the 4-anilinoquinazoline scaffold were most potent. On the aniline ring at position 4 of the quinazoline moiety substituents like NO2, CN, CF3 led to very high BCRP inhibition potencies. The most potent compounds were further investigated for their intrinsic cytotoxicity and their ability to reverse the multidrug resistance. Compound 20, an anilinoquinazoline bearing a phenyl ring at position 2 and meta-nitro substitution on the 4-anilino ring, was found to have the highest therapeutic ratio. The most active compounds from each variation were also investigated for their effect on BCRP expression. It was found that compound 20 has no significant effect on BCRP expression, while compound 31 decreased the surface BCRP expression. The only difference in the two compounds was the presence of a 3,4-dimethoxyphenyl ring in compound 31 instead of phenyl substitution at position 2 of the quinazoline moiety. From the study of all target compounds, compound 20 was the most prominent compound having inhibitory potency even higher than Ko143, the most potent BCRP inhibitor known. Compound 20 was also found to be selective towards BCRP with a very high therapeutic ratio.  相似文献   

2.
We recently reported alkoxyl biphenyl derivatives bearing dibenzo[c,e]azepine scaffold as novel P-glycoprotein (P-gp, ABCB1) inhibitors. In this study, their ability to reverse breast cancer resistance protein (BCRP, ABCG2)-mediated multidrug resistance was tested in HEK293/BCRP cells which was BCRP-transfected stable HEK293 cells. It was observed that compounds 4d, 4h, 4i increased mitoxantrone accumulation in HEK293/BCRP cells via inhibiting BCRP efflux function. Notably, the inhibitory activity of 4i was comparable to that of the classical BCRP inhibitor Ko143 at an equimolar concentration. Interestingly, 4i had little inhibitory effect on multidrug resistance-associated protein 1 (MRP1, ABCC1), another drug efflux transporter. These results, together with the previous findings, suggest that 4i may be a dual inhibitor of P-gp and BCRP to warrant further investigation.  相似文献   

3.
The ABC proteins are a family of membrane transporters that mediates the extrusion from cells of a wide variety of structurally unrelated substrates. The current review focuses on the role of these efflux pumps located in the intestine on the low oral bioavailability of trans-resveratrol. The enterocytes hold in the apical membrane three transporters, namely, P-glycoprotein (P-gp), multidrug resistance associated protein 2 (MRP2) and breast cancer resistance protein (BCRP), whereas the basolateral membrane contains multidrug resistance associated protein 3 (MRP3). The use of different specific inhibitors of these transporters as well as knockout mice enabled us to conclude that MRP2 and BCRP are involved in the extrusion of trans-resveratrol glucuronide and sulfate to the intestinal lumen without the participation of P-gp. The role of these transporters as a bottleneck in the absorption of trans-resveratrol cannot be undervalued affecting not only the bioavailability of its glucuronide and sulfate but also their distribution in the different organs.  相似文献   

4.
Breast cancer resistant protein (BCRP/ABCG2), a 72 kDa plasma membrane transporter protein is a member of ABC transporter superfamily. Increased expression of BCRP causes increased efflux and therefore, reduced intracellular accumulation of many unrelated chemotherapeutic agents leading to multidrug resistance (MDR). A series of 31 benzamide and phenyltetrazole derivatives with amide and urea linkers has been synthesized to serve as potential BCRP inhibitors in order to overcome BCRP-mediated MDR. The target derivatives were tested for their cytotoxicity and reversal effects in human non-small cell lung cancer cell line H460 and mitoxantrone resistant cell line H460/MX20 using the MTT assay. In the benzamide series, compounds 6 and 7 exhibited a fold resistance of 1.51 and 1.62, respectively at 10 µM concentration which is similar to that of FTC, a known BCRP inhibitor. Compounds 27 and 31 were the most potent analogues in the phenyltetrazole series with amide linker with a fold resistance of 1.39 and 1.32, respectively at 10 µM concentration. For the phenyltetrazole series with urea linker, 38 exhibited a fold resistance of 1.51 which is similar than that of FTC and is the most potent compound in this series. The target compounds did not exhibit reversal effect in P-gp overexpressing resistant cell line SW620/Ad300 suggesting that they are selective BCRP inhibitors.  相似文献   

5.
6.
We present a novel lead for inhibitors of multidrug resistance-associated proteins (MRPs). Compound 1 (4-[(5,6,7,8-tetrahydro-4-oxo-4H-[1]benzothieno[2,3-d][1,3]thiazin-2-yl)amino]benzoic acid) was about six times more potent than the known inhibitor MK571 at MRP1, while at MRP2 its effect was similar to that of MK571. Structural analogs were also evaluated. Among them, compound 2, sharing the 4-aminobenzoic acid substructure with 1, also inhibited MRP1. Both derivatives were inactive against P-gp. It can be concluded that their carboxyl group is needed for inhibition of MRPs and accounts for the selectivity of these compounds.  相似文献   

7.
Many studies have been performed with the aim of developing effective resistance modulators to overcome the multidrug resistance (MDR) of human cancers. Potent MDR modulators are being investigated in clinical trials. Many current studies are focused on dietary herbs due to the fact that these have been used for centuries without producing any harmful side effects. In this study, the effect of tetrahydrocurcumin (THC) on three ABC drug transporter proteins, P-glycoprotein (P-gp or ABCB1), mitoxantrone resistance protein (MXR or ABCG2) and multidrug resistance protein 1 (MRP1 or ABCC1) was investigated, to assess whether an ultimate metabolite form of curcuminoids (THC) is able to modulate MDR in cancer cells. Two different types of cell lines were used for P-gp study, human cervical carcinoma KB-3-1 (wild type) and KB-V-1 and human breast cancer MCF-7 (wild type) and MCF-7 MDR, whereas, pcDNA3.1 and pcDNA3.1-MRP1 transfected HEK 293 and MXR overexpressing MCF7AdrVp3000 or MCF7FL1000 and its parental MCF-7 were used for MRP1 and MXR study, respectively. We report here for the first time that THC is able to inhibit the function of P-gp, MXR and MRP1. The results of flow cytometry assay indicated that THC is able to inhibit the function of P-gp and thereby significantly increase the accumulation of rhodamine and calcein AM in KB-V-1 cells. The result was confirmed by the effect of THC on [3H]-vinblastine accumulation and efflux in MCF-7 and MCF-7MDR. THC significantly increased the accumulation and inhibited the efflux of [3H]-vinblastine in MCF-7 MDR in a concentration-dependent manner. This effect was not found in wild type MCF-7 cell line. The interaction of THC with the P-gp molecule was clearly indicated by ATPase assay and photoaffinity labeling of P-gp with transport substrate. THC stimulated P-gp ATPase activity and inhibited the incorporation of [125I]-iodoarylazidoprazosin (IAAP) into P-gp in a concentration-dependent manner. The binding of [125I]-IAAP to MXR was also inhibited by THC suggesting that THC interacted with drug binding site of the transporter. THC dose dependently inhibited the efflux of mitoxantrone and pheophorbide A from MXR expressing cells (MCF7AdrVp3000 and MCF7FL1000). Similarly with MRP1, the efflux of a fluorescent substrate calcein AM was inhibited effectively by THC thereby the accumulation of calcein was increased in MRP1-HEK 293 and not its parental pcDNA3.1-HEK 293 cells. The MDR reversing properties of THC on P-gp, MRP1, and MXR were determined by MTT assay. THC significantly increased the sensitivity of vinblastine, mitoxantrone and etoposide in drug resistance KB-V-1, MCF7AdrVp3000 and MRP1-HEK 293 cells, respectively. This effect was not found in respective drug sensitive parental cell lines. Taken together, this study clearly showed that THC inhibits the efflux function of P-gp, MXR and MRP1 and it is able to extend the MDR reversing activity of curcuminoids in vivo.  相似文献   

8.
9.
In this study, a new series of heterodimers was synthesized. These derivatives are N,N-bis(alkanol)amine aryl esters or N,N-bis(ethoxyethanol)amine aryl esters carrying a methoxylated aryl residue combined with a flavone or chromone moiety. The new compounds were studied to evaluate their P-gp modulating activity on a multidrug-resistant leukemia cell line. Some of the new compounds show a good MDR reversing activity; interestingly this new series of compounds does not comply with the structure-activity relationships (SAR) outlined by previously synthesized analogs carrying different aromatic moieties. In the case of the compounds described in this paper, activity is linked to different features, in particular the characteristics of the spacer, which seem to be critical for the interaction with the pump. This fact indicates that the presence of a flavone or chromone residue influences the SAR of these series of products, and that flexible molecules can find different productive binding modes with the P-gp recognition site. These results support the synthesis of new compounds that might be useful leads for the development of drugs to control P-gp-dependent MDR.  相似文献   

10.
The ability of cells to acquire resistance to multiple pharmaceuticals, namely multidrug resistance (MDR), is often mediated by the over-expression of efflux transporters of the ATP-binding cassette (ABC) superfamily; for example P-glycoprotein (P-gp or MDR1), breast cancer resistance protein (BCRP or ABCG2), and multidrug resistance-associated protein MRP1. ABCs pump drug molecules out of cells against a concentration gradient, reducing their intracellular concentration. The ability of polymeric amphiphiles to inhibit ABCs as well as the cellular pathways involved in the inhibition has been extensively investigated. This work investigated for the first time the effect of branched poly(ethylene oxide)-poly(propylene oxide) block copolymers (poloxamines) on the levels of mRNA encoding for MDR1, BCRP and MRP1, in a human hepatoma cell line (Huh7). Copolymers with a broad range of molecular weights and hydrophilic-lipophilic balances were assayed. Results confirmed the down-regulation of mdr1 and abcg2 genes. Conversely, the mrp1 gene was not affected. These findings further support the versatility of these temperature- and pH-responsive copolymers to overcome drug resistance in cancer and infectious diseases.  相似文献   

11.
Sensitizing activities exerted by 3,4-dihydro-7-hydroxycadalene (1), rac-3,7-dihydroxy-3(4H)-isocadalen-4-one (4) and (1R,4R)-4H-1,2,3,4-tetrahydro-1-hydroxycadalen-15-oic acid (9), the major cadinanes isolated from Heterotheca inuloides, towards multidrug-resistant MES-SA/MX2 and parental MES-SA epithelial human uterine sarcoma cell lines were evaluated. We also evaluated the in silico interactions (expressed as ΔGbinding in kcal/mol) of cadinanes 1, 4 and 9 in an in vitro assay, and also tested several structurally related natural compounds with the multidrug resistance protein (MDR1, P-glycoprotein), human multidrug resistance protein 1 (MRP1), and breast cancer resistance protein (BCRP) structures as pharmacological targets using AutoDock and AutoDock Vina. Compound 1 potentiated the cytotoxicity of doxorubicin and mitoxantrone drugs in resistant MES-SA/MX2 cells, compared to cells treated with each drug alone. Compound 1 could reverse the resistance to doxorubicin 12.44 fold at a concentration of 5 μM. It also re-sensitized cells to mitoxantrone 3.94 fold. Hence, compound 1 may be considered as a potential chemosensitizing agent to overcome multidrug resistance in cancer. The docking analysis suggested that there are interactions between cadinanes from H. inuloides and MDR1, MRP1, and BCRP proteins mainly through π-π interactions and hydrogen bonds.  相似文献   

12.
Multi-drug resistance (MDR) is one of the dominant reasons for the failure of cancer chemotherapy. P-glycoprotein (P-gp) over-expression in the plasma membrane of drug-resistant tumor cells promotes the efflux of chemotherapeutic agents and plays a significant role in MDR. Several investigations have suggested that dihydro-β-agarofuran sesquiterpenes are the potential modulators of MDR. However, their cellular mechanism in regulating P-gp has not been fully explored. Seven dihydro-β-agarofuran sesquiterpenes (17) from Tripterygium hypoglaucum was evaluated for the chemoreversal activity of HepG2/Adr cells. 1, 2, 4, 5, and 7 were active with reversal fold ranging from 47.68 to 456.90. The image-based high-screening indicated that all of the active compounds were capable of decreasing the efflux of doxorubicin (Dox). The most potent 4 did not affect the expression or subcellular distribution of P-gp. P-gp ATPase activity was stimulated by 4 in a dose-depend manner, suggesting that 4 may be the substrate of P-gp. The docking data implied that 4 took PHE 979, PHE 332, and GLN 986 to bind with P-gp. Taken together, the results demonstrated that dihydro-β-agarofuran sesquiterpenes from T. Hypoglaucum were the substrate of P-gp and potential modulators of MDR.  相似文献   

13.
To identify new potent multidrug resistance modulators, we have synthesized a series of novel thieno[2,3-b]pyridines and furo[2,3-b]pyridines, and examined their stucture–activity relationships. All synthesized compounds were tested to determine BCRP1, P-gp, and MRP1 inhibitor activity, and most potent MDR modulators were also screened for their toxicity, cytotoxicity and Ca2+ channel antagonist activity. Among these compounds, thieno[2,3-b]pyridine (6r) was found to exhibit a potent P-gp inhibitory action with EC50 = 0.3 ± 0.2 μM, MRP1 inhibitory action with EC50 = 1.1 ± 0.1 μM and BCRP1 inhibitory action with EC50 = 0.2 ± 0.05 μM and may represent suitable candidate for further pharmacological studies.  相似文献   

14.
Multidrug resistance (MDR), which is the main obstacle to cancer chemotherapy, is mainly due to overexpression of ATP-binding cassette (ABC) transporters, especially ABCB1 (P-glycoprotein), ABCC1 (MRP1), and ABCG2 (BCRP). A novel idea to overcome MDR is that of collateral sensitivity, i.e., finding a treatment to which cells overexpressing ABC transporters are more sensitive than cells that do not overexpress them. In this study we demonstrate for the first time that MDCKII-BCRP cells, overexpressing ABCG2, are more vulnerable to exogenous oxidative stress induced by several oxidants, viz. paraquat, menadione, hydrogen peroxide, tert-butylperoxide, and 2,2-azobis(2-methylpropionamidine) dihydrochloride. MDCKII-BCRP cells have significantly decreased glutathione level and decreased activities of glutathione S-transferase and glutathione reductase, which may underlie their augmented vulnerability to oxidative stress. These results suggest the possibility of using agents that induce oxidative stress to selectively kill cells overexpressing BCRP.  相似文献   

15.
A series of arylpiperazine derivatives of hydantoin-3-acetate, including previously obtained 5,5-diphenylhydantoin (17) and new-synthesized spirofluorene-hydantoin derivatives (812), were investigated in the search for new inhibitors of the tumour multidrug resistance (MDR) efflux pump P-glycoprotein (P-gp, ABCB1) overexpressed in mouse T-lymphoma cells. Synthesis of new compounds (812) was performed. Crystal structures of two compounds (8 and 11) were determined by X-ray diffraction method. The conformations of the investigated molecules (8 and 11) in the crystalline samples are different. The bent conformation seems to be more favourable for biological activity than the extended one. The efflux pump inhibitory properties of the compounds 112 were evaluated in the fluorescence uptake assay using rhodamine 123 dye in mouse T-lymphoma model in vitro. Their cytotoxic action was examined, too. All compounds with methyl acetate moiety displayed high potency to inhibit the MDR efflux pump. The most active compound, methyl 2-(1-(4-(4-(2,3-dichlorophenyl)piperazin-1-yl)butyl)-5,5-diphenylhydantoin-3-yl)acetate (5), tested at 1/10 of verapamil concentration displayed the 9-fold higher P-gp inhibitory action.  相似文献   

16.
Substituted naphthalenyl derivatives bearing oxazole, or thiazole or furyl heteronuclei have been carried out as bioisosters of aryl-oxazoles and -thiazoles derivatives previously reported in order to investigate the role of the hindrance on the activity towards P-gp/BCRP/and MRP1 transporters. In addition, the role of naphthalenyl group to modulate P-gp intrinsic activity of these compounds was ascertained.The results demonstrated that all naphthalenyl derivatives displayed comparable P-gp activity with respect to lead compounds previously characterized in our SAR studies but were less active towards BCRP and MRP1 pumps. In terms of intrinsic activity, the replacement of aryl with naphthalenyl moiety led to P-gp inhibitors, unambiguous or ambiguous substrates on the base of the heteronucleus and the substituent on the naphthalenyl fragment. Indeed, oxazole derivatives were: inhibitors (R = H, F, OH), unambiguous substrates (R = OCH3), or ambiguous substrate (R = Br); thiazole derivatives were: unambiguous substrates (R = OCH3, Br), or ambiguous substrates (R = H, F). Finally furyl derivatives were ambiguous substrates.  相似文献   

17.
COX‐2 (cyclo‐oxygenase 2), an inducible form of the enzyme that catalyses the first step in the synthesis of prostanoids, is associated with inflammatory diseases and carcinogenesis, which is suspected to promote angiogenesis and tissue invasion of tumours and resistance to apoptosis. COX‐2 is also involved in drug resistance and poor prognosis of many neoplastic diseases or cancers. The activation of the COX‐2/PGE2 (prostaglandin E2)/prostaglandin E receptor signal pathway can up‐regulate the expression of all three ABC (ATP‐binding‐cassette) transporters, MDR1/P‐gp (multidrug resistance/P‐glycoprotein), MRP1 (multidrug‐resistance protein 1) and BCRP (breast‐cancer‐resistance protein), which encode efflux pumps, playing important roles in the development of multidrug resistance. In addition, COX inhibitors inhibit the expression of MDR1/P‐gp, MRP1 and BCRP and enhance the cytotoxicity of anticancer drugs. Therefore we can use the COX inhibitors to potentialize the effects of chemotherapeutic agents and reverse multidrug resistance to facilitate the patient who may benefit from addition of COX inhibitors to standard cytotoxic therapy.  相似文献   

18.
Novel 20(S)-protopanoxadiol (PPD) analogues were designed, synthesized, and evaluated for the chemosensitizing activity against a multidrug resistant (MDR) cell line (KBvcr) overexpressing P-glycoprotein (P-gp). Structure–activity relationship analysis showed that aromatic substituted aliphatic amine at the 24-positions (groups V) effectively and significantly sensitized P-gp overexpressing multidrug resistant (MDR) cells to anticancer drugs, such as docetaxel (DOC), vincristine (VCR), and adriamycin (ADM). PPD derivatives 12 and 18 showed 1.3–2.6 times more effective reversal ability than verapamil (VER) for DOC and VCR. Importantly, no cytotoxicity was observed by the active PPD analogues (5 μM) against both non-MDR and MDR cells, suggesting that PPD analogues serve as novel lead compounds toward a potent and safe resistance modulator. Moreover, a preliminary mechanism study demonstrated that the chemosensitizing activity of PPD analogues results from inhibition of P-glycoprotein (P-gp) overexpressed in MDR cancer cells.  相似文献   

19.
Twenty-five amide alkaloids (125) from Piper boehmeriifolium and 10 synthetic amide alkaloid derivatives (3948) were evaluated for antiproliferative activity against eight human tumor cell lines, including chemosensitive and multidrug-resistant (MDR) cell lines. The results suggested tumor type-selectivity. 1-[7-(3,4,5-Trimethoxyphenyl)heptanoyl]piperidine (46) exhibited the best inhibitory activity (IC50 = 4.94 μM) against the P-glycoprotein (P-gp)-overexpressing KBvin MDR sub-line, while it and all other tested compounds, except 9, were inactive (IC50 >40 μM) against MDA-MB-231 and SK-BR-3. Structure–activity relationships (SARs) indicated that (i) 3,4,5-trimethoxy phenyl substitution is critical for selectivity against KBvin, (ii) the 4-methoxy group in this pattern is crucial for antiproliferative activity, (iii) double bonds in the side chain are not needed for activity, and (iv), in arylalkenylacyl amide alkaloids, replacement of an isobutylamino group with pyrrolidin-1-yl or piperidin-1-yl significantly improved activity. Further study on Piper amides is warranted, particularly whether side chain length affects the ability to overcome the MDR cancer phenotype.  相似文献   

20.
Breast Cancer Resistance Protein (BCRP/ABCG2) belongs to the superfamily of ATP binding cassette (ABC) transporters. Characteristic of some of these transporter proteins is the transport of a variety of structurally unrelated substances against a concentration gradient by using the energy of ATP hydrolysis. ABCG2 has been found to confer multidrug resistance (MDR) in cancer cells. Several anticancer drugs have been identified as ABCG2 substrates including mitoxantrone, etoposide and topotecan. As inhibition of the transporter is one of the strategies to overcome MDR, we have synthesized and tested several 3-methoxy flavones and investigated them for their ABCG2 inhibition. Among these, pentamethyl quercetin (compound 4) and pentamethyl morin (compound 5) were found to be fluorescent and hence screened for their possible transport by ABCG2 using confocal microscopy. This study showed that pentamethyl quercetin was far less accumulated in ABCG2 overexpressing MDCK BCRP cells as compared to MDCK sensitive cells, suggesting possible efflux of this compound by ABCG2. Pentamethyl morin showed no visible difference in both cell lines. Based on this observation, we studied several other fluorescent 3-methoxy flavones for their accumulation in ABCG2 overexpressing cells. To confirm the substrate or inhibitor nature of the tested compounds, these compounds were further investigated by ATPase assay. If stimulation of the transporter ATPase activity is detected, one can conclude that the compound is probably a transported substrate. All compounds except pentamethyl morin (compound 5) and tetramethyl quercetin (compound 6) were found to stimulate ATPase activity pointing to possible substrates despite being potent inhibitors of ABCG2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号