首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trypanosoma brucei is the causing agent of African trypanosomiasis. These parasites possess a unique thiol redox system required for DNA synthesis and defense against oxidative stress. It includes trypanothione and trypanothione reductase (TryR) instead of the thioredoxin and glutaredoxin systems of mammalian hosts. Here, we show that the benzisothiazolone compound ebsulfur (EbS), a sulfur analogue of ebselen, is a potent inhibitor of T. brucei growth with a favorable selectivity index over mammalian cells. EbS inhibited the TryR activity and decreased non-protein thiol levels in cultured parasites. The inhibition of TryR by EbS was irreversible and NADPH-dependent. EbS formed a complex with TryR and caused oxidation and inactivation of the enzyme. EbS was more toxic for T. brucei than for Trypanosoma cruzi, probably due to lower levels of TryR and trypanothione in T. brucei. Furthermore, inhibition of TryR produced high intracellular reactive oxygen species. Hydrogen peroxide, known to be constitutively high in T. brucei, enhanced the EbS inhibition of TryR. The elevation of reactive oxygen species production in parasites caused by EbS induced a programmed cell death. Soluble EbS analogues were synthesized and cured T. brucei brucei infection in mice when used together with nifurtimox. Altogether, EbS and EbS analogues disrupt the trypanothione system, hampering the defense against oxidative stress. Thus, EbS is a promising lead for development of drugs against African trypanosomiasis.  相似文献   

2.
New pyranonaphthoquinone derivatives were synthesized and investigated for their activity against Trypanosoma brucei, Leishmania major, and Toxoplasma gondii parasites. The pentafluorophenyl derivative was efficacious against T. brucei with single digit micromolar EC50 values and against T. gondii with even sub-micromolar values. The 3-chloro-4,5-dimethoxyphenyl derivative showed an activity against amastigotes of Leishmania major parasites comparable to that of amphotericin B. In addition, antioxidant activities were observed for the bromophenyl derivatives, and their redox behavior was studied by cyclovoltammetry. Anti-parasitic and antioxidative activities of the new naphthoquinone derivatives appear uncorrelated.  相似文献   

3.
We have previously shown that 3-nitro-1H-1,2,4-triazole-based amines demonstrate significant trypanocidal activity, in particular against Trypanosoma cruzi, the causative parasite of Chagas disease. In the present work we further expanded our research by evaluating in vitro the trypanocidal activity of nitrotriazole-based piperazines and nitrotriazole-based 2-amino-1,3-benzothiazoles to establish additional SARs. All nitrotriazole-based derivatives were active or moderately active against T. cruzi; however two of them did not fulfill the selectivity criteria. Five derivatives were active or moderately active against Trypanosoma brucei rhodesiense while one derivative was moderately active against Leishmania donovani. Active compounds against T. cruzi demonstrated selectivity indexes (toxicity to host cells/toxicity to T. cruzi amastigotes) from 117 to 1725 and 12 of 13 compounds were up to 39-fold more potent than the reference compound benznidazole. Detailed SARs are discussed.  相似文献   

4.
Novel isothiocyanate derivatives were synthesized starting from noscapine, bile acids, amino acids, and some aromatic compounds. Antiparasitic activities of the synthesized derivatives were tested against four unicellular protozoa, i.e., Trypanosoma brucei rhodesiense, T. cruzi, Leishmania donovani, and Plasmodium falciparum. Interestingly, seven isothiocyanate analogues displayed promising antiparasitic activity against Leishmania donovani with IC50 values between 0.4 and 1.0 µM and selectivity index (SI) ranged from 7.8 to 18.4, comparable to the standard drug miltefosine (IC50 = 0.7 μM). Compound 7h demonstrated the best antileishmanial activity with an IC50 value of 0.4 µM. Seven products exhibited inhibition activity against T. brucei rhodesiense with IC50s below 2.0 μM and SI between 2.7 and 29.3. Four primary amine derivatives of noscapine and five isothiocyanate derivatives exhibited antiplasmodial activity with IC50s in the range of 1.1–2.7 µM and SI values between 1.1 and 14.5. The isothiocyanate derivative 7c showed against T. cruzi with an IC50 value of 1.9 µM and SI 4. Molecular docking and ADMET studies were performed to investigate the interaction between active ligands and T. brucei trypanothione reductase active site. The docking studies showed significant binding affinity of noscapine derivatives to enzyme active site and good compatibility with experimental data.  相似文献   

5.
The identification of a new series of growth inhibitors of Trypanosoma brucei rhodesiense, causative agent of Human African Trypanosomiasis (HAT), is described. A selection of compounds from our in-house compound collection was screened in vitro against the parasite leading to the identification of compounds with nanomolar inhibition of T. brucei growth. Preliminary SAR on the hit compound led to the identification of compound 34 that shows low nanomolar parasite growth inhibition (T. brucei EC50 5?nM), is not cytotoxic (HeLa CC50?>?25,000?nM) and is selective over other parasites, such as Trypanosoma cruzi and Plasmodium falciparum (T. cruzi EC50 8120?nM, P. falciparum EC50 3624?nM).  相似文献   

6.
Forty six new 1,4-epoxy-2-exo-aryl- and cis-2-aryl-4-hydroxytetrahydro-1-benzazepine derivatives were synthesized and fully characterized. All compounds were tested in vitro against both Trypanosoma cruzi and Leishmania chagasi parasites and also for cytotoxicity using Vero and THP-1 mammalian cell lines. Many of the evaluated compounds showed remarkable activity against the epimastigote and intracellular amastigote forms of T. cruzi, with IC50 values comparable with that of control drug nifurtimox, a nitrofuran derivative currently used in the treatment of Chagas’ disease. Other derivatives were found to have good activity against L. chagasi promastigotes, with low toxicity against the mammalian cells, but neither of them was active on intracellular amastigotes of L. chagasi infecting THP-1 macrophages.  相似文献   

7.

Background

The two front-line drugs for chronic Trypanosoma cruzi infections are limited by adverse side-effects and declining efficacy. One potential new target for Chagas'' disease chemotherapy is sterol 14α-demethylase (CYP51), a cytochrome P450 enzyme involved in biosynthesis of membrane sterols.

Methodology/Principal Finding

In a screening effort targeting Mycobacterium tuberculosis CYP51 (CYP51Mt), we previously identified the N-[4-pyridyl]-formamide moiety as a building block capable of delivering a variety of chemotypes into the CYP51 active site. In that work, the binding modes of several second generation compounds carrying this scaffold were determined by high-resolution co-crystal structures with CYP51Mt. Subsequent assays against the CYP51 orthologue in T. cruzi, CYP51Tc, demonstrated that two of the compounds tested in the earlier effort bound tightly to this enzyme. Both were tested in vitro for inhibitory effects against T. cruzi and the related protozoan parasite Trypanosoma brucei, the causative agent of African sleeping sickness. One of the compounds had potent, selective anti–T. cruzi activity in infected mouse macrophages. Cure of treated host cells was confirmed by prolonged incubation in the absence of the inhibiting compound. Discrimination between T. cruzi and T. brucei CYP51 by the inhibitor was largely based on the variability (phenylalanine versus isoleucine) of a single residue at a critical position in the active site.

Conclusions/Significance

CYP51Mt-based crystal structure analysis revealed that the functional groups of the two tightly bound compounds are likely to occupy different spaces in the CYP51 active site, suggesting the possibility of combining the beneficial features of both inhibitors in a third generation of compounds to achieve more potent and selective inhibition of CYP51Tc.  相似文献   

8.
Heteroxenic and monoxenic trypanosomatids were screened for the presence of actin using a mouse polyclonal antibody produced against the entire sequence of the Trypanosoma cruzi actin gene, encoding a 41.9 kDa protein. Western blot analysis showed that this antibody reacted with a polypeptide of approximately 42 kDa in the whole-cell lysates of parasites targeting mammals (T. cruzi, Trypanosoma brucei and Leishmania major), insects (Angomonas deanei, Crithidia fasciculata, Herpetomonas samuelpessoai and Strigomonas culicis) and plants (Phytomonas serpens). A single polypeptide of approximately 42 kDa was detected in the whole-cell lysates of T. cruzi cultured epimastigotes, metacyclic trypomastigotes and amastigotes at similar protein expression levels. Confocal microscopy showed that actin was expressed throughout the cytoplasm of all the tested trypanosomatids. These data demonstrate that actin expression is widespread in trypanosomatids.  相似文献   

9.
10.
Parasitic diseases especially those prevail in tropical and subtropical regions severely threaten the lives of people due to available drugs found to be ineffective as several resistant strains have been emerged. Due to the complexity of the marine environment, researchers considered it as a new field to search for compounds with therapeutic efficacy, marine sponges represents the milestone in the discovery of unique compounds of potent activities against parasitic infections. In the present article, literatures published from 2010 until March 2021 were screened to review antiparasitic potency of bioactive compounds extracted from marine sponges. 45 different genera of sponges have been studied for their antiparasitic activities. The antiparasitic activity of the crude extract or the compounds that have been isolated from marine sponges were assayed in vitro against Plasmodium falciparum, P. berghei, Trypanosoma brucei rhodesiense, T. b. brucei, T. cruzi, Leishmania donovani, L. tropica, L. infantum, L. amazonesis, L. major, L. panamesis, Haemonchus contortus and Schistosoma mansoni. The majority of antiparastic compounds extracted from marine sponges were related to alkaloids and peroxides represent the second important group of antiparasitic compounds extracted from sponges followed by terpenoids. Some substances have been extracted and used as antiparasitic agents to a lesser extent like steroids, amino acids, lipids, polysaccharides and isonitriles. The activities of these isolated compounds against parasites were screened using in vitro techniques. Compounds' potent activity in screened papers was classified in three categories according to IC50: low active or inactive, moderately active and good potent active.  相似文献   

11.
A series of glutathione derivatives 14, modified at the N,S and/or COOH sites, with in vitro antitrypanosomal activity were tested against bloodstream form Trypanosoma brucei 247 wild type and a T. b. brucei 247 strain over-expressing the multiple drug resistance protein (MRPA) by 50–100x to assess the susceptibility of these compounds to resistance by the TbMRP protein. Of the compounds tested, only compound 1 inhibited both bloodstream form T. brucei and T. bruceiMRPA, with a resistance factor of 1.4, indicating it to be an inhibitor of this protein and proteins acting in synergy with the transporter, whilst 2 & 3 and its derivatives showed reduced inhibitory activity against T. bruceiMRPA, indicating them to be substrates and susceptible to resistance.  相似文献   

12.

Background

The Trypanosoma cruzi genome was sequenced from a hybrid strain (CL Brener). However, high allelic variation and the repetitive nature of the genome have prevented the complete linear sequence of chromosomes being determined. Determining the full complement of chromosomes and establishing syntenic groups will be important in defining the structure of T. cruzi chromosomes. A large amount of information is now available for T. cruzi and Trypanosoma brucei, providing the opportunity to compare and describe the overall patterns of chromosomal evolution in these parasites.

Methodology/Principal Findings

The genome sizes, repetitive DNA contents, and the numbers and sizes of chromosomes of nine strains of T. cruzi from four lineages (TcI, TcII, TcV and TcVI) were determined. The genome of the TcI group was statistically smaller than other lineages, with the exception of the TcI isolate Tc1161 (José-IMT). Satellite DNA content was correlated with genome size for all isolates, but this was not accompanied by simultaneous amplification of retrotransposons. Regardless of chromosomal polymorphism, large syntenic groups are conserved among T. cruzi lineages. Duplicated chromosome-sized regions were identified and could be retained as paralogous loci, increasing the dosage of several genes. By comparing T. cruzi and T. brucei chromosomes, homologous chromosomal regions in T. brucei were identified. Chromosomes Tb9 and Tb11 of T. brucei share regions of syntenic homology with three and six T. cruzi chromosomal bands, respectively.

Conclusions

Despite genome size variation and karyotype polymorphism, T. cruzi lineages exhibit conservation of chromosome structure. Several syntenic groups are conserved among all isolates analyzed in this study. The syntenic regions are larger than expected if rearrangements occur randomly, suggesting that they are conserved owing to positive selection. Mapping of the syntenic regions on T. cruzi chromosomal bands provides evidence for the occurrence of fusion and split events involving T. brucei and T. cruzi chromosomes.  相似文献   

13.
The farnesyl diphosphate synthase (FPPS) has previously been characterized in trypanosomes as an essential enzyme for their survival and as the target for bisphosphonates, drugs that are effective both in vitro and in vivo against these parasites. Enzymes from the isoprenoid pathway have been assigned to different compartments in eukaryotes, including trypanosomatids. We here report that FPPS localizes to the cytoplasm of both Trypanosoma cruzi and T. brucei, and is not present in other organelles such as the mitochondria and glycosomes.  相似文献   

14.
Here we report identification of new lead compounds based on quinoline and indenoquinolines with variable side chains as antiprotozoal agents. Quinolines 32, 36 and 37 (Table 1) and indenoquinoline derivatives 14 and 23 (Table 2) inhibit the in vitro growth of the Trypanosoma cruzi, Trypanosoma brucei, Trypanosoma brucei rhodesiense subspecies and Leishmania infantum with IC50 = 0.25 μM. These five compounds have superior activity to that of the front-line drugs such as benznidazole, nifurtimox and comparable to amphotericin B. Thus these compounds constitute new ‘leads’ for further structure–activity studies as potential active antiprotozoal agents.  相似文献   

15.
Leishmaniasis is a widespread neglected tropical disease complex that is responsible of one million new cases per year. Current treatments are outdated and pose many problems that new drugs need to overcome. With the goal of developing new, safe, and affordable drugs, we have studied the in vitro activity of 12 different 5-nitroindazole derivatives that showed previous activity against different strains of Trypanosoma cruzi in a previous work. T. cruzi belongs to the same family as Leishmania spp., and treatments for the disease it produces also needs renewal. Among the derivatives tested, compounds 1, 2, 9, 10, 11, and 12 showed low J774.2 macrophage toxicity, while their effect against both intracellular and extracellular forms of the studied parasites was higher than the ones found for the reference drug Meglumine Antimoniate (Glucantime®). In addition, their Fe-SOD inhibitory effect, the infection rates, metabolite alteration, and mitochondrial membrane potential of the parasites treated with the selected drugs were studied in order to gain insights into the action mechanism, and the results of these tests were more promising than those found with glucantime, as the leishmanicidal effect of these new drug candidates was higher. The promising results are encouraging to test these derivatives in more complex studies, such as in vivo studies and other experiments that could find out the exact mechanism of action.  相似文献   

16.
Series of 2-exo-aryl-1,4-epoxy-2,3,4,5-tetrahydronaphtho[1,2-b]azepines 3ak and cis-2-aryl-4-hydroxy-2,3,4,5-tetrahydronaphtho[1,2-b]azepines 4aj were synthesized and evaluated against free and intracellular live forms of Trypanosoma cruzi and Leishmania chagasi parasites using in vitro assays. Cell toxicity was also analyzed on Vero and THP-1 mammalian cell lines. The compounds 3c, 3f, and 4d were the most active against both live forms of T. cruzi parasites with low mammalian cell toxicity. Some compounds were active on free live forms of L. chagasi parasites but none was active on intracellular amastigotes of L. chagasi infecting THP-1 macrophages.  相似文献   

17.
The development of new drugs against Chagas disease is a priority since the currently available medicines have toxic effects, partial efficacy and are targeted against the acute phase of disease. At present, there is no drug to treat the chronic stage. In this study, we have optimized a whole cell-based assay for high throughput screening of compounds that inhibit infection of mammalian cells by Trypanosoma cruzi trypomastigotes. A 2000-compound chemical library was screened using a recombinant T. cruzi (Tulahuen strain) expressing β-galactosidase. Three hits were selected for their high activity against T. cruzi and low toxicity to host cells in vitro: PCH1, NT1 and CX1 (IC50: 54, 190 and 23 nM, respectively). Each of these three compounds presents a different mechanism of action on intracellular proliferation of T. cruzi amastigotes. CX1 shows strong trypanocidal activity, an essential characteristic for the development of drugs against the chronic stage of Chagas disease where parasites are found intracellular in a quiescent stage. NT1 has a trypanostatic effect, while PCH1 affects parasite division. The three compounds also show high activity against intracellular T. cruzi from the Y strain and against the related kinetoplastid species Leishmania major and L. amazonensis. Characterization of the anti–T. cruzi activity of molecules chemically related to the three library hits allowed the selection of two compounds with IC50 values of 2 nM (PCH6 and CX2). These values are approximately 100 times lower than those of the medicines used in patients against T. cruzi. These results provide new candidate molecules for the development of treatments against Chagas disease and leishmaniasis.  相似文献   

18.
Anemia caused by trypanosome infection is poorly understood. Autoimmunity during Trypanosoma brucei infection was proposed to have a role during anemia, but the mechanisms involved during this pathology have not been elucidated. In mouse models and human patients infected with malaria parasites, atypical B-cells promote anemia through the secretion of autoimmune anti-phosphatidylserine (anti-PS) antibodies that bind to uninfected erythrocytes and facilitate their clearance. Using mouse models of two trypanosome infections, Trypanosoma brucei and Trypanosoma cruzi, we assessed levels of autoantibodies and anemia. Our results indicate that acute T. brucei infection, but not T. cruzi, leads to early increased levels of plasma autoantibodies against different auto antigens tested (PS, DNA and erythrocyte lysate) and expansion of atypical B cells (ABCs) that secrete these autoantibodies. In vitro studies confirmed that a lysate of T. brucei, but not T. cruzi, could directly promote the expansion of these ABCs. PS exposure on erythrocyte plasma membrane seems to be an important contributor to anemia by delaying erythrocyte recovery since treatment with an agent that prevents binding to it (Annexin V) ameliorated anemia in T. brucei-infected mice. Analysis of the plasma of patients with human African trypanosomiasis (HAT) revealed high levels of anti-PS antibodies that correlated with anemia. Altogether these results suggest a relation between autoimmunity against PS and anemia in both mice and patients infected with T. brucei.  相似文献   

19.
Megazol (7) is a 5-nitroimidazole that is highly active against Trypanosoma cruzi and Trypanosoma brucei, as well as drug-resistant forms of trypanosomiasis. Compound 7 is not used clinically due to its mutagenic and genotoxic properties, but has been largely used as a lead compound. Here, we compared the activity of 7 with its 4H-1,2,4-triazole bioisostere (8) in bloodstream forms of T. brucei and T. cruzi and evaluated their activation by T. brucei type I nitroreductase (TbNTR) enzyme. We also analysed the cytotoxic and genotoxic effects of these compounds in whole human blood using Comet and fluorescein diacetate/ethidium bromide assays. Although the only difference between 7 and 8 is the substitution of sulphur (in the thiadiazole in 7) for nitrogen (in the triazole in 8), the results indicated that 8 had poorer antiparasitic activity than 7 and was not genotoxic, whereas 7 presented this effect. The determination of Vmax indicated that although 8 was metabolised more rapidly than 7, it bounds to the TbNTR with better affinity, resulting in equivalent kcat/KM values. Docking assays of 7 and 8 performed within the active site of a homology model of the TbNTR indicating that 8 had greater affinity than 7.  相似文献   

20.
We have previously shown that azasterols have activity against Trypanosoma brucei, Trypanosoma cruzi and Leishmania species, which are the causative agents of various neglected tropical diseases. In this paper, we discuss the replacement of the sterol core of the azasterols with sterol mimics. Various mimics were designed, and the structures were minimised to see if they could adopt a similar conformation to that of the azasterols. From this, two series of mimics were synthesised and then evaluated against the parasites. Compounds showed moderate activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号