首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The small-molecule inhibitor of phosphoglycerate dehydrogenase, NCT-503, reduces incorporation of glucose-derived carbons into serine in vitro. Here we describe an off-target effect of NCT-503 in neuroblastoma cell lines expressing divergent phosphoglycerate dehydrogenase (PHGDH) levels and single-cell clones with CRISPR-Cas9-directed PHGDH knockout or their respective wildtype controls. NCT-503 treatment strongly reduced synthesis of glucose-derived citrate in all cell models investigated compared to the inactive drug control and independent of PHGDH expression level. Incorporation of glucose-derived carbons entering the TCA cycle via pyruvate carboxylase was enhanced by NCT-503 treatment. The activity of citrate synthase was not altered by NCT-503 treatment. We also detected no change in the thermal stabilisation of citrate synthase in cellular thermal shift assays from NCT-503-treated cells. Thus, the direct cause of the observed off-target effect remains enigmatic. Our findings highlight off-target potential within a metabolic assessment of carbon usage in cells treated with the small-molecule inhibitor, NCT-503.  相似文献   

2.
Cancer cells reprogram their metabolism to support growth and to mitigate cellular stressors. The serine synthesis pathway has been identified as a metabolic pathway frequently altered in cancers and there has been considerable interest in developing pharmacological agents to target this pathway. Here, we report a series of indole amides that inhibit human 3-phosphoglycerate dehydrogenase (PHGDH), the enzyme that catalyzes the first committed step of the serine synthesis pathway. Using X-ray crystallography, we show that the indole amides bind the NAD+ pocket of PHGDH. Through structure-based optimization we were able to develop compounds with low nanomolar affinities for PHGDH in an enzymatic IC50 assay. In cellular assays, the most potent compounds inhibited de novo serine synthesis with low micromolar to sub-micromolar activities and these compounds successfully abrogated the proliferation of cancer cells in serine free media. The indole amide series reported here represent an important improvement over previously published PHGDH inhibitors as they are markedly more potent and their mechanism of action is better defined.  相似文献   

3.
Serine plays critically important roles in tumorigenesis. Homo sapiens 3-phosphoglycerate dehydrogenase (PHGDH) catalyzes the first committed step for the synthesis of glucose-derived serine via the phosphoserine pathway and has been associated with a wide variety of cancers, including breast cancer, melanoma, colon cancer, glioma, nasopharyngeal carcinoma, cervical adenocarcinoma, etc. Azacoccone E, an aza-epicoccone derivative from the culture of Aspergillus flavipes, exhibited effective inhibitory activity against PHGDH in vitro. The microscale thermophoresis (MST) method and the cellular thermal shift assay (CETSA) confirmed that azacoccone E directly bound to PHGDH. And the cell-based experiments showed that this compound was selectively toxic to PHGDH-dependent cancer cells and could cause apoptosis. Further biochemical assays revealed that it was a noncompetitive inhibitor with respect to the substrate of 3-PG and exhibited a time-dependent inhibition. Furthermore, molecular docking demonstrated that azacoccone E coordinated in an allosteric site of PHGDH with low binding energy. Therefore, azacoccone E can be considered as a possible drug candidate targeting at PHGDH for treatment of cancers.  相似文献   

4.
The metabolic requirements of cancer cells differ from that of their normal counterparts. To support their proliferation, cancer cells switch to a fermentative metabolism that is thought to support biomass production. Instances where metabolic enzymes promote tumorigenesis remain rare. However, an enzyme involved in the de novo synthesis of serine, 3-phosphoglycerate dehydrogenase (PHGDH), was recently identified as a putative oncogene. The potential mechanisms by which PHGDH promotes cancer are discussed.  相似文献   

5.
Although p53 is frequently mutated in human cancers, about 80% of human melanomas retain wild-type p53. Here we report that PHGDH, the key metabolic enzyme that catalyzes the rate-limiting step of the serine biosynthesis pathway, is a target of p53 in human melanoma cells. p53 suppresses PHGDH expression and inhibits de novo serine biosynthesis. Notably, upon serine starvation, p53-mediated cell death is enhanced dramatically in response to Nutlin-3 treatment. Moreover, PHGDH has been found recently to be amplified frequently in human melanomas. We found that PHGDH overexpression significantly suppresses the apoptotic response, whereas RNAi-mediated knockdown of endogenous PHGDH promotes apoptosis under the same treatment. These results demonstrate an important role of p53 in regulating the serine biosynthesis pathway through suppressing PHGDH expression and reveal serine deprivation as a novel approach to sensitize p53-mediated apoptotic responses in human melanoma cells.  相似文献   

6.
D‐3‐phosphoglycerate dehydrogenase (PHGDH) is a key enzyme involved in the synthesis of l ‐serine. Despite the high serine content in silk proteins and the crucial role of PHGDH in serine biosynthesis, PHGDH has not been described in silkworms to date. Here, we identified PHGDH in the silkworm Bombyx mori and evaluated its biochemical properties. On the basis of the amino acid sequence and phylogenetic tree, this PHGDH has been categorized as a new type and designated as bmPHGDH. The recombinant bmPHGDH was overexpressed and purified to homogeneity. Kinetic studies revealed that PHGDH uses NADH as a coenzyme to reduce phosphohydroxypyruvate. High expression levels of bmphgdh messenger RNA (mRNA) were observed in the middle part of the silk gland and midgut in a standard strain of silkworm. Moreover, a sericin‐deficient silkworm strain displayed reduced expression of bmphgdh mRNA. These findings indicate that bmPHGDH might play a crucial role in the provision of l ‐serine in the larva of B. mori.  相似文献   

7.
Previous studies have reported that microRNAs function as key regulators in tumor development and progression. This study aims to investigate the functional effects of miR-503 expression in cervical cancer (CC) progression. We detected the expression of miR-503 in CC tissues and cell lines using quantitative real-time polymerase chain reaction. Synthesized miR-503 mimics or inhibitors were used to upregulate or downregulate the expression of miR-503 in HeLa or SiHa cells. Cell Counting Kit-8 and colony formation assay were used to detect the ability of cell proliferation. Furthermore, luciferase assay and Western blot were applied to confirm the target of miR-503 in CC cells. Here, we demonstrated that miR-503 expression was significantly downregulated in CC tissues, compared with adjacent normal tissues. miR-503 expression was significantly associated with tumor size and International Federation of Gynecology and Obstetrics stage. Furthermore, increasing miR-503 expression in CC cells dramatically inhibited cell proliferation, colony formation ability of CC. However, reducing miR-503 had reverse effects on these malignant behaviors. Moreover, we demonstrated that miR-503 inhibited cell proliferation by targeting AKT2 3′-untranslated region and affected its expression. Overexpression of AKT2 rescued the effects induced by miR-503 on cell proliferation. Therefore, our results indicated that miR-503 may serve as a tumor suppressor in CC and provide a potential value for CC treatment.  相似文献   

8.
Activity-based proteomics is a methodology that is used to quantify the catalytically active subfraction of enzymes present in complex mixtures such as lysates or living cells. To apply this approach for in-cell selectivity profiling of inhibitors of serine proteases, we designed a novel activity-based probe (ABP). This ABP consists of (i) a fluorophosphonate-reactive group, directing the probe toward serine hydrolases or proteases and (ii) an alkyne functionality that can be specifically detected at a later stage with an azide-functionalized reporter group through a Cu(I)-catalyzed coupling reaction ("click chemistry"). This novel ABP was shown to label the active site of several serine proteases with greater efficiency than a previously reported fluorophosphonate probe. More importantly, our probe was cell-permeable and achieved labeling of enzymes within living cells with efficiency similar to that observed for the corresponding lysate fraction. Several endogenous serine hydrolases whose activities were detected upon in-cell labeling were identified by two-dimensional gel and MS analyses. As a proof of principle, cell-permeable inhibitors of an endogenous serine protease (prolyl endopeptidase) were assessed for their potency and specificity in competing for the in situ labeling of the selected enzyme. Altogether these results open new perspectives for safety profiling studies in uncovering potential cellular "side effects" of drugs (unanticipated off-target inhibition or activation) that may be overlooked by standard selectivity profiling methods.  相似文献   

9.
The splicing of pre-mRNA is a critical process in normal cells and is deregulated in cancer. Compounds that modulate this process have recently been shown to target a specific vulnerability in tumors. We have developed a novel cell-based assay that specifically activates luciferase in cells exposed to SF3B1 targeted compounds, such as sudemycin D6. This assay was used to screen a combined collection of approved drugs and bioactive compounds. This screening approach identified several active hits, the most potent of which were CGP-74514A and aminopurvalanol A, both have been reported to be cyclin-dependent kinases (CDKs) inhibitors. We found that these compounds, and their analogs, show significant cdc2-like kinase (CLK) inhibition and clear structure-activity relationships (SAR) at CLKs. We prepared a set of analogs and were able to ‘dial out’ the CDK activity and simultaneously developed CLK inhibitors with low nanomolar activity. Thus, we have demonstrated the utility of our exon-skipping assay and identified new molecules that exhibit potency and selectivity for CLK, as well as some structurally related dual CLK/CDK inhibitors.  相似文献   

10.
The major human apurinic/apyrimidinic endonuclease APE1 plays a pivotal role in the repair of base damage via participation in the DNA base excision repair (BER) pathway. Increased activity of APE1, often observed in tumor cells, is thought to contribute to resistance to various anticancer drugs, whereas down-regulation of APE1 sensitizes cells to DNA damaging agents. Thus, inhibiting APE1 repair endonuclease function in cancer cells is considered a promising strategy to overcome therapeutic agent resistance. Despite ongoing efforts, inhibitors of APE1 with adequate drug-like properties have yet to be discovered. Using a kinetic fluorescence assay, we conducted a fully-automated high-throughput screen (HTS) of the NIH Molecular Libraries Small Molecule Repository (MLSMR), as well as additional public collections, with each compound tested as a 7-concentration series in a 4 µL reaction volume. Actives identified from the screen were subjected to a panel of confirmatory and counterscreen tests. Several active molecules were identified that inhibited APE1 in two independent assay formats and exhibited potentiation of the genotoxic effect of methyl methanesulfonate with a concomitant increase in AP sites, a hallmark of intracellular APE1 inhibition; a number of these chemotypes could be good starting points for further medicinal chemistry optimization. To our knowledge, this represents the largest-scale HTS to identify inhibitors of APE1, and provides a key first step in the development of novel agents targeting BER for cancer treatment.  相似文献   

11.
12.
目的:研究丝氨酸生物合成途径(SSP)在肺腺癌使用表皮生长因子受体酪氨酸激酶抑制剂(EGFR-TKIs)治疗后引起的适应性耐药中发挥的作用,探究早期适应性耐药机制以寻找抗耐药靶标。方法:使用EGFR-TKIs药物短时刺激肺腺癌细胞系后,利用Western blotting和qRT-PCR技术检测丝氨酸生物合成途径中关键酶的蛋白及m RNA水平变化,同时利用LC-MS检测细胞内丝氨酸生物合成途径产物及相关代谢产物变化情况。通过CCK8法检测敲低关键酶对细胞增殖的影响。体内实验进行肺腺癌细胞裸鼠皮下移植瘤注射,采用剂量爬坡法构建体内适应性耐药模型,检测肿瘤组织中关键酶表达情况。结果:1.细胞内丝氨酸生物合成途径关键酶PHGDH、PSAT1、PSPH的蛋白表达水平在不同药物作用时间和浓度下有不同程度上调,且m RNA水平也上调了20-50%左右(P0.05);2.HCC827细胞中SSP及下游代谢通路产物如P-Serine、Serine、Glycine、AMP等均有显著性上调(P0.01);3.敲低关键酶PSAT1及PSPH后可抑制细肺腺癌细胞HCCC827及PC9的增殖,与对照组相比最高抑制率可达60%左右(P0.01);4.体内诱导PC9细胞适应性耐erlotinib后,肿瘤组织中的PHGDH及PSAT1表达均有明显上调。结论:丝氨酸生物合成途径介导了肺腺癌EGFR-TKIs靶向治疗的适应性耐药,其关键酶有望作为抗耐药靶标进行联合治疗,从而提高EGFR-TKIs靶向药物的早期疗效并最终克服耐药性的产生。  相似文献   

13.
Cyclin-dependent kinases (CDKs) play important roles in regulating cell cycle progression, and altered cell cycles resulting from over-expression or abnormal activation of CDKs observed in many human cancers. As a result, CDKs have become extensive studied targets for developing chemical inhibitors for cancer therapies; however, protein kinases share a highly conserved ATP binding pocket at which most chemical inhibitors bind, therefore, a major challenge in developing kinase inhibitors is achieving target selectivity. To identify cell growth inhibitors with potential applications in cancer therapy, we used an integrated approach that combines one-pot chemical synthesis in a combinatorial manner to generate diversified small molecules with new chemical scaffolds coupled with growth inhibition assay using developing zebrafish embryos. We report the successful identification of a novel lead compound that displays selective inhibitory effects on CDK2 activity, cancer cell proliferation, and tumor progression in vivo. Our approaches should have general applications in developing cell proliferation inhibitors using an efficient combinatorial chemical genetic method and integrated biological assays. The novel cell growth inhibitor we identified should have potential as a cancer therapeutic agent.  相似文献   

14.
The Aurora kinases play a critical role in mitosis and have been suggested as promising targets for cancer therapy due to their frequent overexpression in a variety of tumors. Compared with established inhibitors of cell division such as the anti-tubulins, novel agents target mitotic enzymes and show similar efficacy but with fewer side effects. Several small-molecule inhibitors of Aurora kinases have been developed as anticancer agents, some of which have progressed to early clinical evaluation. Here we identified 3-hydroxyflavone as a novel Aurora B inhibitor through high throughput screening. 3-Hydroxyflavone showed potent inhibition to Aurora B with the IC50 on a nanomolar basis in the enzyme-based kinase activity assay. In the cell-based western blotting analysis, 3-hydroxyflavone dramatically decreased the phosphorylation level of Histone H3 on the site of serine 10, demonstrating the potent endogenous Aurora B activity inhibition in cell level. The followed cell image analysis provided the consist result. To make it clear whether 3-hydroxyflavone inhibited Aurora B by direct binding or not, SPR analysis was carried out to measure the affinity of interaction between Aurora B protein and 3-hydroxyflavone and the result proved the binding with high affinity. Usually Aurora activity suppression induced cancer cell proliferation inhibition. Colony formation and cell viability with/without treatment of 3-hydroxyflavone were measured using CCK-8. The growth suppression under 3-hydroxyflavone present and the growth recovery after being released gave strong evidence that presence of 3-hydroxyflavone efficiently inhibited the fast growth of cancer cells.  相似文献   

15.
Cytosolic PIM kinases are the members of serine/ threonine family play a crucial role in the cancer progression and development. Overexpression of PIM kinases is observed in various types of cancers including prostate, hematological, pancreatic, breast carcinoma and likewise. PIM kinases have now been considered as limelight target for the discovery of new molecules as novel anticancer agents as no drug is in the market targeting PIM kinases. In the last two decades, numerous PIM kinase inhibitors have been developed and few of them were in clinical trial phases but could not pass the pipeline of the clinical trials. The present comprehensive review intends to cover biological and the structural aspects of PIM kinases and also medicinal chemistry of PIM inhibitors developed in recent years.  相似文献   

16.
17.
Saturated fatty acids, such as palmitate, promote accumulation of ceramide, which impairs activation and signalling of PKB (protein kinase B; also known as Akt) to important end points such as glucose transport. SPT (serine palmitoyl transferase) is a key enzyme regulating ceramide synthesis from palmitate and represents a potential molecular target in curbing lipid-induced insulin resistance. In the present study we explore the effects of palmitate upon insulin action in L6 muscle cells in which SPT expression/activity has been decreased by shRNA (small-hairpin RNA) or sustained incubation with myriocin, an SPT inhibitor. Incubation of L6 myotubes with palmitate (for 16 h) increases intramyocellular ceramide and reduces insulin-stimulated PKB activation and glucose uptake. PKB inhibition was not associated with impaired IRS (insulin receptor substrate) signalling and was ameliorated by short-term treatment with myriocin. Silencing SPT expression (approximately 90%) by shRNA or chronic cell incubation with myriocin (for 7 days) markedly suppressed SPT activity and palmitate-driven ceramide synthesis; however, challenging these muscle cells with palmitate still inhibited the hormonal activation of PKB. This inhibition was associated with reduced IRS1/p85-PI3K (phosphoinositide 3-kinase) coupling that arises from diverting palmitate towards greater DAG (diacylglycerol) synthesis, which elevates IRS1 serine phosphorylation via activation of DAG-sensitive PKCs (protein kinase Cs). Treatment of SPT-shRNA cells or those treated chronically with myriocin with PKC inhibitors antagonized palmitate-induced loss in insulin signalling. The findings of the present study indicate that SPT plays a crucial role in desensitizing muscle cells to insulin in response to incubation with palmitate. While short-term inhibition of SPT ameliorates palmitate/ceramide-induced insulin resistance, sustained loss/reduction in SPT expression/activity promotes greater partitioning of palmitate towards DAG synthesis, which impacts negatively upon IRS1-directed insulin signalling.  相似文献   

18.
Here we present a simple and rapid method for the construction of phosphonic peptide mimetic inhibitor libraries-products of Ugi and Passerini multicomponent condensations-leading to the selection of new biologically active phosphonic pseudopeptides. As the starting isonitriles, 1-isocyanoalkylphosphonate diaryl ester derivatives were applied. The structure of the synthesized inhibitors was designed to target human neutrophil elastase, a serine protease whose uncontrolled activity may lead to development of several pathophysiological states such as rheumatoid arthritis, cystic fibrosis or tumor growth and invasion. After screening the inhibitory activity of our constructed libraries, the most active compounds were synthesized as single molecules. One of the obtained inhibitors, Cbz-Met-O-Met-Val(P)(OC(6)H(4)-p-Cl)(2), displayed apparent second-order inhibition value at 40,105M(-1)s(-1) as the diastereomers mixture. Inhibition potency and selectivity of action toward other serine proteases as well as the results of initial in vitro experiments regarding inhibitors influence on cancer cell proliferation are presented.  相似文献   

19.
HSP90, a major molecular chaperone, plays an essential role in the maintenance of several signaling molecules. Inhibition of HSP90 by inhibitors such as 17-allylamino-demethoxy-geldanamycin (17AAG) is known to induce apoptosis in various cancer cells by decreasing the activation or expression of pro-survival molecules such as protein kinase B (Akt). While we did not observe either decrease in expression or activation of pro-survival signaling molecules in human breast cancer cells upon inhibiting HSP90 with 17AAG, we did observe a decrease in cell motility of transformed cells, and cell motility and invasion of cancer cells. We found a significant decrease in the number of filopodia and lamellipodia, and in the F-actin bundles upon HSP90 inhibition. Our results show no change in the active forms or total levels of FAK and Pax, or in the activation of Rac-1 and Cdc-42; however increased levels of HSP90, HSP90α and HSP70 were observed upon HSP90 inhibition. Co-immuno-precipitation of HSP90 reveals interaction of HSP90 with G-actin, which increases upon HSP90 inhibition. FRET results show a significant decrease in interaction between actin monomers, leading to decreased actin polymerization upon HSP90 inhibition. We observed a decrease in the invasion of human breast cancer cells in the matrigel assay upon HSP90 inhibition. Over-expression of αB-crystallin, known to be involved in actin dynamics, did not abrogate the effect of HSP90 inhibition. Our work provides the molecular mechanism by which HSP90 inhibition delays cell migration and should be useful in developing cancer treatment strategies with known anti-cancer drugs such as cisplatin in combination with HSP90 inhibitors.  相似文献   

20.
A deficiency of 3-phosphoglycerate dehydrogenase (PHGDH) is a disorder of serine biosynthesis identified in children with congenital microcephaly, seizures, and severe psychomotor retardation. We report here the identification of the 1468G-->A (V490M) mutation of this gene in two siblings of an Ashkenazi Jewish family, providing further evidence that the V490M mutation is a common, panethnic cause of this deficiency. Using a novel, DNA-based diagnostic test, the mutation was not detected in 400 non-Jewish controls; one heterozygote was found among 400 persons of Ashkenazi Jewish ethnicity. Extensive biochemical studies were undertaken to characterize the effect of this mutation on enzyme activity, turnover, and stability. The V490M PHGDH yielded less than 35% of the activity observed for the wild-type enzyme when overexpressed by transient transfection or when comparing the endogenous activity in fibroblast cells from the patients with controls. Immunoblotting studies showed a comparable reduction in the level of immunoreactive PHGDH in cells expressing the mutant enzyme. Pulse-chase experiments with metabolically labeled PHGDH indicated that this resulted from an increased rate of degradation of the mutant enzyme following its synthesis. Thermolability analyses of mutant and wild-type enzyme activity revealed no significant differences. While others have proposed that the V490M mutation decreases the V(max) of the enzyme, we conclude that this mutation impairs the folding and/or assembly of PHGDH but has minimal effects on the activity or stability of that portion of the V490M mutant that reaches a mature conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号