首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Due to their capacity to induce primary immune responses, dendritic cells (DC) are attractive vectors for immunotherapy of cancer. Yet the targeting of tumor Ags to DC remains a challenge. Here we show that immature human monocyte-derived DC capture various killed tumor cells, including Jurkat T cell lymphoma, malignant melanoma, and prostate carcinoma. DC loaded with killed tumor cells induce MHC class I- and class II-restricted proliferation of autologous CD8+ and CD4+ T cells, demonstrating cross-presentation of tumor cell-derived Ags. Furthermore, tumor-loaded DC elicit expansion of CTL with cytotoxic activity against the tumor cells used for immunization. CTL elicited by DC loaded with the PC3 prostate carcinoma cell bodies kill another prostate carcinoma cell line, DU145, suggesting recognition of shared Ags. Finally, CTL elicited by DC loaded with killed LNCap prostate carcinoma cells, which express prostate specific Ag (PSA), are able to kill PSA peptide-pulsed T2 cells. This demonstrates that induced CTL activity is not only due to alloantigens, and that alloantigens do not prevent the activation of T cells specific for tumor-associated Ags. This approach opens the possibility of using allogeneic tumor cells as a source of tumor Ag for antitumor therapies.  相似文献   

2.
CD40-CD40 ligand (CD40L) interaction is an important costimulatory signal in the interaction between T cells and antigen-presenting cells (APC). In the present study, we determined whether the linkage of CD40L to the tumor-specific idiotype (Id) derived from a murine B-cell lymphoma, 38C13, could enhance its immunogenicity when presented by dendritic cells (DC). We showed that bone marrow-derived DC pulsed with Id-CD40L upregulated the expression of CD40, CD80, CD86, and major histocompatibility complex (MHC) class II molecules with the increased production of interleukin-12 (IL-12). Mice immunized with DC loaded with Id-CD40L showed high levels of anti-Id antibody response of both IgG2a and IgG1 isotypes. In addition, nylon wool-enriched T cells from these immunized mice showed a tumor-specific T-cell proliferative response upon stimulation with Id protein. Mice immunized with DC pulsed with Id alone failed to show any of these immune responses. Immunization with DC pulsed with Id-CD40L showed increased resistance to the challenge by 38C13 tumor, and tumor growth was significantly retarded. Together, these results show that linkage of CD40L to a self-tumor antigen enhances the anti-tumor immune response in DC-based treatment.  相似文献   

3.
BACKGROUND: Transplantable B16 melanoma is widely used as a tumor model to investigate tumor immunity. We wished to characterize the leukocyte populations infiltrating B16 melanoma tumors, and the functional properties of tumor-infiltrating dendritic cells (TIDC). MATERIALS AND METHODS: We used the B16 melanoma cell line expressing ovalbumin protein (OVA) to investigate the phenotype and T cell stimulatory capacity of TIDC. RESULTS: The majority of leukocytes in B16 melanoma were macrophages, which colocalized with TIDCs, B and T cells to the peripheral area of the tumor. Both myeloid and plasmacytoid DC populations were present within tumors. Most of these DCs appeared immature, but about a third expressed a mature phenotype. TIDCs did not present tumor-derived antigen, as they were unable to induce the proliferation of tumor-specific CD4+ and CD8+ T cells in vitro unless in the presence of specific peptides. Some presentation of tumor-derived antigen could be demonstrated in the tumor-draining lymph node using in vivo proliferation assays. However, while proliferation of CD8+ T cells was reproducibly demonstrated, no proliferation of CD4+ T cells was observed. CONCLUSION: In summary, our data suggest that DCs in tumors have limited antigen-presenting function. Inefficient antigen presentation extends to the tumor-draining lymph node, and may affect the generation of antitumor immune responses.  相似文献   

4.
Acinetobacter baumannii outer membrane protein A (AbOmpA) is a major surface protein that is an important pathogen-associated molecular pattern. Based on our previous findings that AbOmpA induced the phenotypic maturation of dendritic cells (DCs) and drove the Th1 immune response in vitro, we investigated the therapeutic efficacy of AbOmpA-pulsed DC vaccines in a murine melanoma model. The surface expression of co-stimulatory molecules (CD80 and CD86) and major histocompatibility complex class I and II molecules was higher in DCs pulsed with AbOmpA alone or with a combination of B16F10 cell lysates than that of DCs pulsed with B16F10 cell lysates. AbOmpA stimulated the maturation of murine splenic DCs in vivo. In a therapeutic model of murine melanoma, AbOmpA-pulsed DCs significantly retarded tumor growth and improved the survival of tumor-bearing mice. AbOmpA-pulsed DCs significantly enhanced CD8+, interleukin-2+ T cells and CD4+, interferon-gamma+ T cells in tumor-bearing mice. These results provide evidence that AbOmpA may be therapeutically useful in adjuvant DC immunotherapy against poorly immunogenic melanoma without tumor-specific antigens.  相似文献   

5.
Due to the pivotal role that dendritic cells (DC) play in eliciting and maintaining functional anti-tumor T cell responses, these APC have been exploited against tumors. DC express several receptors for the Fc portion of IgG (Fcγ receptors) that mediate the internalization of antigen-IgG complexes and promote efficient MHC class I and II restricted antigen presentation. In this study, the efficacy of vaccination with DC pulsed with apoptotic B16 melanoma cells opsonized with an anti-CD44 IgG (B16-CD44) was explored. Immature bone marrow derived DC grown in vitro with IL-4 and GM-CSF were pulsed with B16-CD44. After 48 h of pulsing, maturation of DC was demonstrated by production of IL-12 and upregulation of CD80 and CD40 expression. To test the efficacy of vaccination with DC+B16-CD44, mice were vaccinated subcutaneously Lymphocytes from mice vaccinated with DC+B16-CD44 produced IFN-γ in response to B16 melanoma lysates as well as an MHC class I restricted B16 melanoma-associated peptide, indicating B16 specific CD8 T cell activation. Upon challenge with viable B16 cells, all mice vaccinated with DC alone developed tumor compared to 40% of mice vaccinated with DC+B16-CD44; 60% of the latter mice remained tumor free for at least 8 months. In addition, established lung tumors and distant metastases were significantly reduced in mice treated with DC+B16-CD44. Lastly, delayed growth of established subcutaneous tumors was induced by combination therapy with anti-CD44 antibodies followed by DC injection. This study demonstrates the efficacy of targeting tumor antigens to DC via Fcγ receptors.  相似文献   

6.
Dendritic cells (DCs) function as professional antigen presenting cells and are critical for linking innate immune responses to the induction of adaptive immunity. Many current cancer DC vaccine strategies rely on differentiating DCs, feeding them tumor antigens ex vivo, and infusing them into patients. Importantly, this strategy relies on prior knowledge of suitable “tumor-specific” antigens to prime an effective anti-tumor response. DCs express a variety of receptors specific for the Fc region of immunoglobulins, and antigen uptake via Fc receptors is highly efficient and facilitates antigen presentation to T cells. Therefore, we hypothesized that expression of the mouse IgG1 Fc region on the surface of tumors would enhance tumor cell uptake by DCs and other myeloid cells and promote the induction of anti-tumor T cell responses. To test this, we engineered a murine lymphoma cell line expressing surface IgG1 Fc and discovered that such tumor cells were taken up rapidly by DCs, leading to enhanced cross-presentation of tumor-derived antigen to CD8+ T cells. IgG1-Fc tumors failed to grow in vivo and prophylactic vaccination of mice with IgG1-Fc tumors resulted in rejection of unmanipulated tumor cells. Furthermore, IgG1-Fc tumor cells were able to slow the growth of an unmanipulated primary tumor when used as a therapeutic tumor vaccine. Our data demonstrate that engagement of Fc receptors by tumors expressing the Fc region of IgG1 is a viable strategy to induce efficient and protective anti-tumor CD8+ T cell responses without prior knowledge of tumor-specific antigens.  相似文献   

7.
Active immunotherapy of cancer requires the availability of a source of tumor antigens. To date, no such antigen associated with lung cancer has been identified. We have therefore investigated the ability of dendritic cells (DC) to capture whole irradiated human lung tumor cells and to present a defined surrogate antigen derived from the ingested tumor cells. We also describe an in vitro system using a modified human adenocarcinoma cell line (A549-M1) that expresses the well-characterized, immunogenic influenza M1 matrix protein as a surrogate tumor antigen. Peripheral blood monocyte-derived DC, when co-cultured with sub-lethally irradiated A549 cells or primary lung tumor cells derived from surgical resection of non-small cell carcinoma (NSCLC), efficiently ingested the tumor cells as determined by flow cytometry analysis and confocal microscopic examination. More importantly, DC loaded with irradiated A549-M1 cells efficiently processed and presented tumor cell-derived M1 antigen to T cells and elicited antigen-specific immune responses that included IFNgamma release from an M1-specific T-cell line, expansion of M1 peptide-specific Vbeta17+ and CD8+ peripheral T cells and generation of M1-specific cytotoxic T lymphocytes (CTL). We also compared DC loaded with irradiated tumor cells to those loaded with tumor cell lysate or killed tumor cells and found that irradiated lung tumor cells as a source of tumor antigen for DC loading is superior to tumor cell lysate or killed tumor cells in efficient induction of antigen-specific T-cell responses. Our results demonstrate the feasibility of using lung tumor cell-loaded DC to induce immune responses against lung cancer-associated antigens and support ongoing efforts to develop a DC-based lung cancer vaccine.  相似文献   

8.
The use of anti-CD3 x antitumor bispecific Abs is an attractive and highly specific approach in cancer therapy. Recombinant Ab technology now provides powerful tools to enhance the potency of such immunotherapeutic constructs. We designed a heterodimeric diabody specific for human CD19 on B cells and CD3epsilon chain of the TCR complex. After production in Escherichia coli and purification, we analyzed its affinity, stability, and pharmacokinetics, and tested its capacity to stimulate T cell proliferation and mediate in vitro lysis of CD19+ tumor cells. The effect of the diabody on tumor growth was investigated in an in vivo model using immunodeficient mice bearing a human B cell lymphoma. The CD3 x CD19 diabody specifically interacted with both CD3- and CD19-positive cells, was able to stimulate T cell proliferation in the presence of tumor cells, and induced the lysis of CD19+ cells in the presence of activated human PBL. The lytic potential of the diabody was enhanced in the presence of an anti-CD28 mAb. In vivo experiments indicated a higher stability and longer blood retention of diabodies compared with single chain Fv fragments. Treatment of immunodeficient mice bearing B lymphoma xenografts with the diabody and preactivated human PBL efficiently inhibited tumor growth. The survival time was further prolonged by including the anti-CD28 mAb. The CD3 x CD19 diabody is a powerful tool that should facilitate the immunotherapy of minimal residual disease in patients with B cell leukemias and malignant lymphomas.  相似文献   

9.
《MABS-AUSTIN》2013,5(1):108-118
Dendritic cells (DCs) function as professional antigen presenting cells and are critical for linking innate immune responses to the induction of adaptive immunity. Many current cancer DC vaccine strategies rely on differentiating DCs, feeding them tumor antigens ex vivo, and infusing them into patients. Importantly, this strategy relies on prior knowledge of suitable “tumor-specific” antigens to prime an effective anti-tumor response. DCs express a variety of receptors specific for the Fc region of immunoglobulins, and antigen uptake via Fc receptors is highly efficient and facilitates antigen presentation to T cells. Therefore, we hypothesized that expression of the mouse IgG1 Fc region on the surface of tumors would enhance tumor cell uptake by DCs and other myeloid cells and promote the induction of anti-tumor T cell responses. To test this, we engineered a murine lymphoma cell line expressing surface IgG1 Fc and discovered that such tumor cells were taken up rapidly by DCs, leading to enhanced cross-presentation of tumor-derived antigen to CD8+ T cells. IgG1-Fc tumors failed to grow in vivo and prophylactic vaccination of mice with IgG1-Fc tumors resulted in rejection of unmanipulated tumor cells. Furthermore, IgG1-Fc tumor cells were able to slow the growth of an unmanipulated primary tumor when used as a therapeutic tumor vaccine. Our data demonstrate that engagement of Fc receptors by tumors expressing the Fc region of IgG1 is a viable strategy to induce efficient and protective anti-tumor CD8+ T cell responses without prior knowledge of tumor-specific antigens.  相似文献   

10.
Based on the detection of spontaneous immune responses in cancer patients with cancer of different origin, Bcl-X(L) was recently described as a highly interesting tumor antigen recognized by CD8 positive cytotoxic T lymphocytes. To further characterize Bcl-X(L) as a tumor antigen we isolated and expanded Bcl-X(L) specific T cells from the peripheral blood of a breast cancer patient hosting a strong Bcl-X(L) specific T cell response. We describe that HLA-A2 restricted Bcl-X(L) specific T cell clones very efficiently lyse peptide pulsed T2 cells. Furthermore, tumor cell lines of different origin, i.e., breast cancer, colon cancer, and melanoma, are efficiently lysed in an HLA-dependent manner. Finally, ex vivo-isolated leukemia cells, but not non-malignant B and T cells are killed by Bcl-X(L) specific T cells. Our data underline Bcl-X(L) as an universal tumor antigen widely applicable in specific anticancer immunotherapy.  相似文献   

11.
Zhang HM  Zhang LW  Liu WC  Cheng J  Si XM  Ren J 《Cytotherapy》2006,8(6):580-588
BACKGROUND: DC vaccination with the use of tumor cells provides the potential to generate a polyclonal immune response to multiple known and unknown tumor Ag. Our study comparatively analyzed DC fused with tumor cells or transfected with tumor total RNA as potential cancer vaccines against hepatocellular carcinoma (HCC). METHODS: Immature DC generated from PBMC of patients with HCC were fused with HepG2-GFP (HepG2 cell line transfected stably with plasmid pEGFP-C3) cells or transfected with their total RNA. Matured DC were used to stimulate autologous T cells, and the resultant Ag-specific effector T cells were analyzed by IFN-gamma ELISPOT assay. RESULTS: DC were capable of further differentiation into mature DC after fusion with HepG2-GFP cells or transfection with HepG2-GFP cell total RNA, and were able to elicit specific T-cell responses in vitro. Both methods of Ag loading could result in stimulating CD4+ and CD8+ T cells, but with the indication that fusion loading was more efficient than RNA loading in priming the Th1 response, while RNA loading was more effective in CTL priming. DISCUSSION: Our results indicate that DC fused with tumor cells or transfected with tumor total RNA represent promising strategies for the development of cancer vaccines for treatment of HCC. They may have potential as an adjuvant immunotherapy for patients with HCC.  相似文献   

12.
In this study we have presented in vitro data and results of a preliminary clinical trial using dendritic cells (DC) in patients with progressive metastatic renal cell carcinoma. DC precursor cells were obtained from peripheral blood mononuclear cells (PBMC). DC were pulsed with autologous tumor cell lysate if available. In total, 15 patients were treated with a median of 3.95 x 10(6) DC administered and ultrasound-guided into a lymph node or into adjacent tissue. Seven patients remained with progressive disease (PD), 7 patients showed stable disease (SD), and one patient displayed a partial response (PR). Most interestingly, the patient who was treated with the highest number of DC (14.4 x 10(6) DC/vaccine) displayed a PR. Delayed-type hypersensitivity (DTH) reaction using autologous tumor lysate was positive in 3 out of 13 patients, including the patient with PR. Two out of 3 patients receiving additional treatment with keyhole limpet hemocyanin (KLH) showed reactivity to KLH after vaccination. CD3+CD4+ and CD3+CD28+ cells as well as the proliferation rate of peripheral blood lymphocytes (PBL) increased significantly in the blood of patients during therapy. In conclusion, our observations confirm the capability of tumor-lysate pulsed autologous DC vaccines to stimulate an immune response in patients with metastatic renal cell carcinoma even in the presence of a large tumor burden. The lack of adverse effects together with immunologic effects support further investigation of this novel therapeutic approach. Further studies are necessary to demonstrate clinical effectiveness in cancer patients, in particular in patients with less advanced disease.  相似文献   

13.
We are investigating the use of Alpha Fetoprotein (AFP) as a tumor rejection antigen for hepatocellular carcinoma (HCC). We recently completed vaccination of 10 AFP+/HLA-A2.1+ HCC subjects with AFP peptide-pulsed autologous dendritic cells (DC). There were increased frequencies of circulating AFP-specific T cells and of IFNγ-producing AFP-specific T cells after vaccination. In order to better understand the lack of association between immune response and clinical response, we have examined additional aspects of the AFP immune response in patients. Here, we have characterized the cell surface phenotype of circulating AFP tetramer-positive CD8 T cells and assessed AFP-specific CD4 function. Before vaccination, HCC subjects had increased frequencies of circulating AFP-specific CD8 T cells with a range of naïve, effector, central and effector memory phenotypes. Several patients had up-regulated activation markers. A subset of patients was assessed for phenotypic changes pre- and post-vaccination, and evidence for complete differentiation to effector or memory phenotype was lacking. CD8 phenotypic and cytokine responses did not correlate with level of patient serum AFP antigen (between 74 and 463,040 ng/ml). Assessment of CD4+ T cell responses by ELISPOT and multi-cytokine assay did not identify any spontaneous CD4 T cell responses to this secreted protein. These data indicate that there is an expanded pool of partially differentiated AFP-specific CD8 T cells in many of these HCC subjects, but that these cells are largely non-functional, and that a detectable CD4 T cell response to this secreted oncofetal antigen is lacking.  相似文献   

14.
Activation of dendritic cells (DC) is crucial for priming of cytotoxic T lymphocytes (CTL), which have a critical role in tumor immunity, and it is considered that adjuvants are necessary for activation of DC and for enhancement of cellular immunity. In this study, we examined an adjuvant capacity of recombinant cholera toxin B subunit (rCTB), which is non-toxic subunit of cholera toxin, on maturation of murine splenic DC. After the in vitro incubation of DC with rCTB, the expression of MHC class II and B7-2 on DC was upregulated and the secretion of IL-12 from DC was enhanced. In addition, larger DC with longer dendrites were observed. These data suggest that rCTB induced DC maturation. Subsequently, we examined the induction of tumor immunity by rCTB-treated DC by employing Meth A tumor cells in mice. Pretreatment with subcutaneous injection of rCTB-treated DC pulsed with Meth A tumor lysate inhibited the growth of the tumor cells depending on the number of DC. Moreover, intratumoral injection of rCTB-treated DC pulsed with tumor lysate had therapeutic effect against established Meth A tumor. Immunization with DC activated by rCTB and the tumor lysate increased number of CTL precursor recognizing Meth A tumor. The antitumor immune response was significantly inhibited in CD8+ T cell-depleted mice, although substantial antitumor effect was observed in CD4+ T cell-depleted mice. These results indicated that rCTB acts as an adjuvant to enhance antitumor immunity through DC maturation and that CD8+ T cells play a dominant role in the tumor immunity. Being considered to be safe, rCTB may be useful as an effective adjuvant to raise immunity for a tumor in clinical application.  相似文献   

15.
The uptake of an antigen and its presentation to specific T cells by dendritic cells (DCs) is a primary event in initiation of humoral and cellular immune responses as well as the induction of cytotoxic T cells (CTLs). DCs are induced by culturing bone marrow cells in the presence of GM-CSF. However, the resulting DCs are short-lived and the culture usually contains CD11c-negative non-DC cells, which adversely affects reproducibility and makes interpretation of the experimental results difficult. Therefore, it would be useful if DCs could be readily immortalized with their functions being retained. In this study we established a novel, immortalized murine DC line with antigen-presenting capacity in vitro as well as an augmenting effect on humoral and cellular immune responses in vivo, utilizing bone marrow cells from transgenic mice harboring the temperature-sensitive SV40 large T-antigen gene. In the presence of GM-CSF, the resulting DC line, termed SVDC, could be continuously subcultured for more than 12 months. When pulsed with OVA alone or OVA-IgG immune complexes via Fcgamma receptors, SVDC augmented OVA-specific T cell proliferation efficiently in vitro, and elicited OVA-specific IgG production in vivo on the adoptive transfer of pulsed SVDC into naive mice. Interestingly, SVDC exhibited significantly high cross-priming ability compared to DCs in a short-term culture, thus leading to their extremely high effectiveness in inducing anti-tumor immunity in vivo. Thus, SVDC is useful for the detailed characterization of antigen presentation, and for research on the various therapeutic benefits of DC vaccination to elicit specific immune responses in immunodeficiencies, infectious diseases and cancer.  相似文献   

16.
The mechanism underlying suppression of immune responses by interleukin-4 (IL-4) has remained unexplained. Here we show that the antigen-presenting dendritic cell is central to counter-regulation of autoimmune disease by IL-4. IL-4 acts at the locus of the dendritic cell to decrease the cytolytic T-cell response, preventing autoimmunity. Stimulation of cytotoxic precursors by antigen pulsed dendritic cells induces their differentiation but the process is blocked by IL-4. IL-4-influenced DC produce distinct effects on CD8+ T cells depending on their state of activation. The molecular basis for this regulation is the alteration of the expression ratio of the costimulatory ligands B7.1/B7.2 on dendritic cells. Our findings demonstrate that B7.2 induces expansion of CD8+ T cells and B7.1 governs their acquisition of cytolytic activity. IL-4 influences the dendritic cell to elicit qualitative differences in T-cell responses, providing the basis for counter-regulation mediated by IL-4.  相似文献   

17.
NK cells represent a potent immune effector cell type that have the ability to recognize and lyse tumors. However, the existence and function of NK cells in the traditionally "immune-privileged" CNS is controversial. Furthermore, the cellular interactions involved in NK cell anti-CNS tumor immunity are even less well understood. We administered non-Ag-loaded, immature dendritic cells (DC) to CD8alpha knockout (KO) mice and studied their anti-CNS tumor immune responses. DC administration induced dramatic antitumor immune protection in CD8alpha KO mice that were challenged with B16 melanoma both s.c. and in the brain. The CNS antitumor immunity was dependent on both CD4+ T cells and NK cells. Administration of non-Ag-loaded, immature DC resulted in significant CD4+ T cell and NK cell expansion in the draining lymph nodes at 6 days postvaccination, which persisted for 2 wk. Finally, DC administration in CD8alpha KO mice was associated with robust infiltration of CD4+ T cells and NK cells into the brain tumor parenchyma. These results represent the first demonstration of a potent innate antitumor immune response against CNS tumors in the absence of toxicity. Thus, non-Ag-loaded, immature DC administration, in the setting of CD8 genetically deficient mice, can induce dramatic antitumor immune responses within the CNS that surpass the effects observed in wild-type mice. Our results suggest that a better understanding of the cross-talk between DC and innate immune cells may provide improved methods to vaccinate patients with tumors located both systemically and within the CNS.  相似文献   

18.
Vaccine strategies designed to elicit strong cell-mediated immune responses to HIV Ags are likely to lead to protective immunity against HIV infection. Dendritic cells (DC) are the most potent APCs capable of priming both MHC class I- and II-restricted, Ag-specific T cell responses. Utilizing a system in which cultured DC from HIV-seronegative donors were used as APC to present HIV-1 Ags to autologous T cells in vitro, the strength and specificity of primary HIV-specific CTL responses generated to exogenous HIV-1 Nef protein as well as intracellularly expressed nef transgene product were investigated. DC expressing the nef gene were able to stimulate Nef-specific CTL, with T cells from several donors recognizing more than one epitope restricted by a single HLA molecule. Primary Nef-specific CTL responses were also generated in vitro using DC pulsed with Nef protein. T cells primed with Nef-expressing DC (via protein or transgene) were able to lyse MHC class I-matched target cells pulsed with defined Nef epitope peptides as well as newly identified peptide epitopes. The addition of Th1-biasing cytokines IL-12 or IFN-alpha, during priming with Nef-expressing DC, enhanced the Nef-specific CTL responses generated using either Ag-loading approach. These results suggest that this in vitro vaccine model may be useful in identifying immunogenic epitopes as vaccine targets and in evaluating the effects of cytokines and other adjuvants on Ag-specific T cell induction. Successful approaches may provide information important to the development of prophylactic HIV vaccines and are envisioned to be readily translated into clinical DC-based therapeutic vaccines for HIV-1.  相似文献   

19.
Chemotherapy and/or radiation therapy are widely used as cancer treatments, but the antitumor effects they produce can be enhanced when combined with immunotherapies. Chemotherapy kills tumor cells, but it also releases tumor antigen and allows the cross-presentation of the tumor antigen to trigger antigen-specific cell-mediated immune responses. Promoting CD4+ T helper cell immune responses can be used to enhance the cross-presentation of the tumor antigen following chemotherapy. The pan HLA-DR binding epitope (PADRE peptide) is capable of generating antigen-specific CD4+ T cells that bind various MHC class II molecules with high affinity and has been widely used in conjunction with vaccines to improve their potency by enhancing CD4+ T cell responses. Here, we investigated whether intratumoral injection of PADRE and the adjuvant CpG into HPV16 E7-expressing TC-1 tumors following cisplatin chemotherapy could lead to potent antitumor effects and antigen-specific cell-mediated immune responses. We observed that treatment with all three agents produced the most potent antitumor effects compared to pairwise combinations. Moreover, treatment with cisplatin, CpG and PADRE was able to control tumors at a distant site, indicating that our approach is able to induce cross-presentation of the tumor antigen. Treatment with cisplatin, CpG and PADRE also enhanced the generation of PADRE-specific CD4+ T cells and E7-specific CD8+ T cells and decreased the number of MDSCs in tumor loci. The treatment regimen presented here represents a universal approach to cancer control.  相似文献   

20.
To develop a novel dendritic cell (DC)-based vaccine for inducing antigen-specific CD8+ T cell responses by cross-presentation, we tested a novel antigen delivery system that introduces soluble antigens into the cytosol of cells by an endocytosis-mediated mechanism which avoids damaging the plasma membrane (“Endo-Porter”™). Proteins released from endosomes into the cytoplasm are degraded by the proteasome, and fragmented antigenic peptides are presented to the classical cytosolic MHC class I pathway. DCs pulsed with OVA protein in the presence of Endo-Porter efficiently stimulate OVA peptide-specific CD8+ T (OT-I) cells. Although this agent diverts some of the endocytosed antigens away from the classical MHC class II-restricted presentation pathway to the class I pathway, the activation of CD4+ T cells was found not to be hampered by Endo-Porter-mediated antigen delivery. On the contrary, it was rather augmented, probably due to the increased uptake of antigen. Because specific CD4+ T cell help is required to license DCs for cross-priming, Endo-Porter-mediated antigen delivery is a promising approach for developing more efficient cancer vaccines targeting both CD4+ and CD8+ T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号