首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Kabeya D  Sakai S 《Annals of botany》2005,96(3):479-488
BACKGROUND AND AIMS: Plants need some kind of stored resources to resprout after shoot destruction. The aim of this study was to determine the relative importance of carbohydrate and nitrogen (N) storage levels for their ability to resprout. METHODS: A shoot clipping experiment was conducted on Quercus crispula seedlings, which were grown in a factorial experimental design, with two light levels (40% and 3% of full light) and three nutrient concentrations (low, medium and high). KEY RESULTS: At the time of shoot clipping (the end of spring leaf expansion), seedlings exposed to 40% light had an average total non-structural carbohydrate (TNC) concentration of 17.0% in their roots compared with 4.9% in the roots of seedlings exposed to 3% light, and the average amount of TNC (TNC pools) in the roots was 203.8 mg and 20.0 mg at 40% light and 3% light, respectively. In contrast, root N concentration averaged 2.3% in the 3% light treatment compared with 1.2% in the 40% light treatment, and it increased with successive rises in nutrient concentrations at both light levels. Regardless of the nutrient status, at the 40% light level >80% of the seedlings resprouted after shoot clipping. Few seedlings, however, resprouted at the 3% light level, particularly in the medium- and high-nutrient treatments. Furthermore, both root TNC concentrations and TNC pools decreased after resprouting, but the amount of root N remained constant. CONCLUSIONS: These results suggest that carbohydrate storage has a stronger influence on resprouting in Quercus crispula than N storage. However, the size of the resprouting shoot was positively correlated with the amount of both N and TNC in roots. The level of N storage is, therefore, also important for the growth of resprouting shoots.  相似文献   

2.
In many resprouting plants, carbohydrates are stored as starch in roots and will be mobilized to support above-ground tissue regrowth after shoot damage. Our objective was to determine how activities of starch hydrolytic enzymes change damage-induced starch mobilization in Caragana korshinskii roots after above-ground tissue loss. Zero percent (control), 30% (30% RSL), 60% (60% RSL) of main shoot length, and 25% (25% RSN), 50% (50% RSN), and 100% (100% RSN) of main shoot number were removed. Compared with control plants, clipping accelerated the reduction of starch in the roots, increased sucrose flux per flower per hour and nectar production per flower per day in 30% RSL, 60% RSL, 25% RSN, and 50% RSN treatments, and improved vegetative growth in 100% RSN treatment. All treatments had similar total nonstructural carbohydrate (TNC) concentrations in leaves, shoots, and stems with the exception of 100% RSN with higher TNC concentration in shoots. Both α-, and β-amylase activities were enhanced by clipping, the former being more strongly correlated with starch degradation in the roots than the latter. The other two possible starch-breaking enzymes, α-glucosidase, and starch phosphorylase showed no significant differences in the activities between treatments. The results suggest that starch degradation in the roots of C. korshinskii was regulated by α-amylase activity and more mobilized starch was used to support vegetative growth in 100% RSN treatment and support sexual reproduction followed by other clipping treatments.  相似文献   

3.
Kabeya D  Sakai S 《Annals of botany》2003,92(4):537-545
Quercus seedlings have hypogeal cotyledons and tap roots, both of which act as storage organs. The importance of the storage function in the two organs may change as the seedling develops. Therefore, changes in carbohydrate reserves in cotyledons and roots of Q. crispula grown under 40 % and 3 % of full light from shoot emergence to the completion of the first leaf flush were monitored. In addition, a shoot-clipping treatment was performed to examine the relative contribution of the cotyledons and tap roots to resprouting. Cotyledons maintained large amounts of nonstructural carbohydrates during shoot development, and carbohydrates were still present in the cotyledons during the final phase of leaf flush. In addition, a notable increase in the amount of carbohydrates was observed in tap roots before leaf flush at both light levels. Since root development occurred before leaf flush, even in plants grown under 3 % light, the carbohydrate found in them presumably originated from seed reserves and was translocated to roots as storage reserves. When shoots were clipped at the leaf flushing stage, the amount of carbohydrate decreased only in the cotyledons after resprouting, suggesting that cotyledons act as the main storage organs during shoot development stages. However, it could be advantageous as a 'risk avoidance strategy' for the seedlings to store reserves in both cotyledons and roots, since cotyledons may be removed by predators during shoot development.  相似文献   

4.
Morphogenic responses within the genus Trifolium were investigated by culturing various explants from seedlings of 72 species. Seedlings from 32 species produced callus alone, 40 produced adventitious shoots and/or roots, of which 25 species produced only shoots and 7 species formed only roots. Seedlings within each species also varied in their response to culture. The section of these seedlings most likely to produce adventitious shoots was the original shoot with the remnants of the surrounding hypocotyl and cotyledons, followed by the excised cotyledons themselves.Inter- and intra-varietal variation was observed in T. repens. Genotypes that produced adventitious buds were selected and crossed. An improvement in the proportion of the population capable of morphogenesis was observed in one cultivar.  相似文献   

5.
Caragana korshinskii Kom. a dominant member of desert flora in north-western China, is often subjected to aboveground shoot destruction but is very successful in its rapid recovery. We investigated the physiological basis for resprouting by comparing shoot elongation, leaf-nutrient content, pre-dawn leaf-water potential (LWP), root non-structural carbohydrate (TNC), and photosynthetic rate of first-year resprouts with those of adjacent undamaged individuals. C. korshinskii resprouts had a significantly higher rate of shoot elongation. Plant responses associated with enhanced shoot elongation included (1) improved water status, (2) drawing upon more TNC from roots to support aboveground shoot regrowth, (3) enhanced photosynthetic rate owing to improved water status and increased nutrient content in leaves, and (4) allocating more photosynthate to vegetative production without reproduction costs. Maintaining an active root system after shoot removal may be the foundation which engenders these mechanisms underlying rapid regrowth of C. korshinskii in the disturbed environment.  相似文献   

6.
In frequently burnt savannas, saplings face the formidable challenge of both recovering from, and eventually growing tall enough to escape from, frequent fire damage. The aim of this study was to explore how saplings allocate carbon to achieve these ends through carbon partitioning, storage and remobilization. Lignotuber total non-structural carbohydrate (TNC) concentrations and δ13C values of Acacia karroo (Fabaceae; Mimosoideae) were determined in plants from two different juvenile stages. These were one year after a fire when the plant consisted of numerous leafy shoots or coppices (“coppicing” stage), and three years after a fire when the plant consisted of one pole-like stem (“Gulliver” stage). Gulliver lignotubers were found to have significantly larger TNC pools (150 g vs. 97 g) and larger TNC concentrations (33% vs. 24%, w/w) than coppice lignotubers showing that post-coppice Gullivers recharged TNC in the lignotuber. δ13C values from the stems of plants in the Gulliver stage were significantly enriched (>1‰) in 13C compared to both coppicing (P < 0.01) and adult (P < 0.05) plants. Changes in both the amount of stored carbon and in the δ13C values indicated dependence on stored carbon reserves, and partially heterotrophic growth for initial resprouting. The plants appeared to use both current photosynthate and stored carbon reserves for growth of the Gulliver stem. The use of stored carbon is hypothesized to promote fast stem growth rates to a height where saplings escape fire injury.  相似文献   

7.
Initiation of new shoots originating from basal meristems of older shoots of Carex rostrata was studied in relation to the internal carbon/nitrogen balance. In a greenhouse experiment, individual shoots with a vigorous formation of a new shoot contained the highest concentrations of free amino acids (FAA) and the lowest concentrations of total nonstructural carbohydrates (TNC), resulting in a low TNC/FAA ratio. Thus shoots with high availability of nitrogenous compounds in relation to carbohydrates started growing a new shoot. The results suggest that TNC/FAA ratios could affect shoot densities. Field measurements supported this view: TNC/FAA ratios were lower in a mesotrophic site with a high density of shoots than in an oligotrophic site with a low density of shoots. Compared with roots, TNC/FAA ratios of shoots seemed to be more decisive both in the greenhouse experiment and in the field. In the greenhouse experiment, initiation of new shoots was measured in fragmented shoots of Carex having no intraclonal connections. Even if physiological integration was lacking due to fragmentation, shoot initiation was efficiently controlled in relation to the internal carbon/nitrogen balance. Received: 14 May 1998 / Accepted: 25 August 1999  相似文献   

8.
Pattinson GS  McGee PA 《Mycorrhiza》2004,14(2):119-125
Tap and primary lateral roots of seedlings of the putatively non-mycorrhizal Banksia ericifolia became marginally colonised when grown in an established mycelium of an arbuscular mycorrhizal (AM) fungus in the laboratory. A similar degree of colonisation was found in seedlings from an open woodland. All colonies lacked arbuscules. Two factors influencing colonisation and associated growth of host plants were examined experimentally: concentration of P in the soil and organic energy associated with the fungus. While some inoculated seedlings were slightly smaller when colonised by AM fungi, the results were inconsistent and never statistically significant. Seedlings take up insignificant quantities of soil P during early growth, even in the presence of abundant added P. Though colonisation was minor in all cases, an existing mycelium, whether or not connected to a companion plant, slightly increased the amount of root of B. ericifolia colonised by an AM fungus. All seedlings grew slowly. Shoots were significantly larger than roots, until the initiation of proteoid roots which commenced at about 40 days after germination, with both relatively high and low P supply.  相似文献   

9.
Hajiboland  R.  Yang  X. E.  Römheld  V. 《Plant and Soil》2003,250(2):349-357
We studied the source of the nitrogen used for the growth and resprouting of holm-oak (Quercus ilexL.), and the contribution of nitrogen and carbohydrate root reserves to these processes. Three-year-old plants were grown in a greenhouse with either a sufficient or restricted nitrogen supply for one year. Half the individuals were subjected to shoot excision to provoke resprouting, and a 15N solution was given to these plants and to controls for two months. Nitrogen, Total Non-structural Carbohydrate (TNC), Total Soluble Protein content, and 15N and 13C composition were determined, and histological analyses of woody tissue were performed. Our results show that N-deprived plants used nitrogen from root reserves to support a growth rate similar to that of non-deprived plants. However, deprived plants lost their resprouting capacity in spite of the high TNC accumulation and nitrogen resupply to the soil. After the supply of nitrogen was restored to N-deprived plants, this nutrient mainly accumulated in under-ground organs, which limited the above-ground growth. Resprouting plants first remobilized the nitrogen stored in roots, and thereafter took it up from the solution. The root-crown region did not behave as a specialised reserve organ in three-year-old Quercus ilex L. plants.  相似文献   

10.
Many plants persist by resprouting after disturbance. However, the benefits of resprouting (survival) may be traded off against height growth and reproduction. Resources (total non-structural carbohydrates—TNC) that could be allocated to growth or reproduction are stored or mobilised to support resprouting. TNC may either be stored by accumulation where availability exceeds the requirements for growth, or by reserve formation when storage is at the expense of growth. Thus, the mechanism of storage and resource allocation may differ between good (R+) and poor (R?) resprouters in response to nutrient availability and disturbance regime. R+ species typically reserve resources to ensure a rapid resprouting response to disturbance. We test whether R+ and R? species in coastal forest, under chronic wind disturbance, differ in growth rates, biomass allocation, leaf traits, water relations and storage of TNC. Seedlings from three confamilial pairs of R+ and R? tree species were subjected to nitrogen addition, water stress and clipping (simulating herbivory) treatments under greenhouse conditions. R? species had greater height growth rates, larger specific leaf area, lower root mass ratio and lower root TNC than R+ species. These differences between R+ and R? species were maintained irrespective of the levels of nitrogen, water and clipping treatments. R+ species did not increase their TNC concentration under nutrient and water stress, indicating that TNC is stored by reserve formation. R+ species appeared to trade-off growth against storage, while R? species did not. In R+ species, reserve formation is likely a bet-hedging strategy against occasional strong selection events in addition to chronic wind stress. By trading off height growth for better resprouting ability, good resprouters may be able to persist at more frequently disturbed sites (e.g., dune crests and windward slopes), while poor resprouters that have faster height growth can dominate less disturbed sites.  相似文献   

11.
Summary Hippophaë rhamnoides seedlings were grown in sterilized and unsterilized soil from a decliningH. rhamnoides scrub, to which different numbers ofLongidorus sp. andTylenchorhynchus microphasmis were added. In sterilized and unsterilized soil, retardation of growth, content of dry matter in the shoots, and incidence of deformed short lateral roots of test plants were positively correlated with counts of both nematode species. Nitrogen content in the shoots, nodulation on the roots of test plants and increase increase in nematodes were negatively correlated with the initial number of both nematode species in sterilized soil. In unsterilized soil, an unknown biotic factor was present that reduces growth ofH. rhamnoides, nodulation and multiplication of the nematodes. This factor seems to interact with the nematodes in reducing growth ofH. rhamnoides.Deceased.  相似文献   

12.
Seasonal carbohydrates allocation by Typha domingensis was evaluated to identify the potential physiological weaknesses in the growth cycle of this plant in Lake Burullus, Egypt. Monthly plant samples (February–October 2014) were separated into shoots, roots and rhizomes to evaluate the seasonal changes in water‐soluble carbohydrates (WSC), starch and total non‐structural carbohydrates (TNC) for each plant organ. The present study indicated that rhizomes are strong carbohydrates sink during the life cycle of T. domingensis. Starch represented the greatest part of the TNC pool, surpassing the concentration of WSC 1.8–4.3 times. The WSC, starch and TNC concentrations of T. domingensis below‐ground organs (rhizomes and roots) were high at the beginning of the vegetative period (February); they reached their minima in March to support the shoots growth, then were followed by a gradual increase due to the translocation from shoots. The time when T. domingensis is expected to be most susceptible to a management technique is at the point in the seasonal cycle when the stored carbohydrates are at the lowest (in March).  相似文献   

13.
The effects of disturbance by recreational activities (trampling) on changes in soil organic matter (SOM) and on mycorrhizal roots of seedlings and mature trees were studied in four stands of a beech (Fagus sylvatica L.) forest near Basel, Switzerland. At each site, comparable disturbed and undisturbed plots were selected. Disturbance reduced ground cover vegetation and leaf litter. Beech seedlings had lower biomass after disturbance. Ergosterol concentration in seedling roots, an indicator of mycorrhizal fungi, was lower in two of the four disturbed plots compared to undisturbed plots; these two disturbed sites had especially low litter levels. Based on ergosterol measurements, mycorrhizas of mature trees did not appear to be negatively affected by trampling. Total fine roots and SOM were higher in the disturbed than in the undisturbed plots at three sites. At the fourth site, fine roots and SOM in the disturbed areas were lower than in the undisturbed areas most probably due to nutrient input following picnic activities. Principal component analysis revealed a close correlation between SOM and fine roots of mature trees as well as litter and seedling biomass. Trampling due to recreational activities caused considerable damage to the vegetation layer and in particular to the beech seedlings and their mycorrhizal fine roots, whereas, roots of mature trees were apparently resilient to trampling.  相似文献   

14.
We investigated seasonal variations in allelopathic potential ofArtemisia princeps var.orientalis. Aqueous and meth-anol extracts and volatile substances were prepared in the laboratory from samples collected monthly (April through October). Their impacts were then assessed on the germination and seedling growth ofLactuca sativa andAchyranthes japonica. The allelopathic potential varied with the time of sample collection and the concentration tested. For example, germination ofL. sativa was not inhibited by the aqueous extract but seedling growth (shoots and roots) was, with its seasonal effect being significant. ForA. japonica, seed germination was not inhibited at lower concentrations (except for August samples). However, at higher concentrations and in certain months (especially July), germination was more negatively affected. The degree of seedling growth inhibition also differed by month and by extract concentration, with roots being impacted more than shoots. Volatile substances also had a time-dependent influence on the germination and seedling elongation ofA. japonica. In a separate experiment, the ethyl-acetate and water fractions of a crude methanol extract were prepared monthly fromA. princeps var.orientalis. Here, we examined their antimicrobial activities against three gram-positive bacteria (Bacillus cereus, Bacillus subtilis, andStaphylococcus aureus), two gramnegative bacteria (Escherichia coli andPseudomonas fluorescens), and one lactic acid bacterium,Lactobacillus plantar urn. The ethyl-acetate fraction that was sampled in September was remarkably potent againstB. cereus andB. subtilis, whereas the water fraction collected in August and September showed great antimicrobial activity against the grampositive and -negative bacteria. In contrast,L. plantarum was not inhibited by the water fraction, regardless of the sampling month. Likewise, the ethyl-acetate and water fractions collected in April and October had the lowest levels of antimicrobial activity.  相似文献   

15.
The savannas (cerrado) of south-central Brazil are currently subjected to frequent anthropogenic burning, causing widespread reduction in tree density. Increasing concentrations of atmospheric CO2 could reduce the impact of such frequent burning by increasing the availability of nonstructural carbohydrate, which is necessary for resprouting. We tested the hypotheses that elevated CO2 stimulates resprouting and accelerates replenishment of carbohydrate reserves. Using a factorial experiment, seedlings of a common Brazilian savanna tree, Keilmeyera coriacea, were grown at 350 ppm and 700 ppm CO2 and at two nutrient levels. To simulate burning, the plants were either clipped at 15 weeks or were left unclipped. Among unclipped plants, CO2 and nutrients both stimulated growth, with no significant interaction between nutrient and CO2 effects. Among clipped plants, both CO2 and nutrients stimulated resprouting. However, there was a strong interaction between CO2 and nutrient effects, with CO2 having a significant effect only in the presence of high nutrient availability. Under elevated CO2, carbohydrate reserves remained at higher levels following clipping. Root total nonstructural carbohydrate remained above 36% in all treatments, so carbohydrate reserves did not limit regrowth. These results indicate that under elevated CO2 this species may be better able to endure the high frequency of anthropogenic burning in the Brazilian savannas. Received: 19 May 1999 / Accepted: 8 November 1999  相似文献   

16.
Mortality and water relations of three cooccurringHakea species were studied over the first year following a wildfire in scrub-health in southwestern Australia.Hakea ruscifolia regenerated from both resprouting adults and seedlings, whereasH. smilacifolia andH. polyanthema regenerated only from seedlings. We monitored seedling and resprout survival relative to pre-fire numbers and water relations (shoot water potential, transpiration, pressure-volume parameters) in order to determine the relationship between plant mortality and water relations over the critical first summer drought. Seedlings ofH. polyanthema (few initial seedlings per parent) showed little mortality (8%), achieved through both drought avoidance (low transpiration, high predawn water potential and relative water content (RWC), substantial osmotic adjustment) and drought tolerance later in the season. Seedlings ofH. smilacifolia andH. ruscifolia (high seedling/parent ratios) showed little drought avoidance and high mortality (54–68%). The remaining seedlings spent 3–4 months in a wilted condition (up to 3.6 MPa and 45% RWC below the turgor loss point inH. ruscifolia) indicating marked drought tolerance of the survivors. In contrast to its seedlings,H. ruscifolia resprouts were successful drought avoiders and experienced no mortality. The high level of survival and drought resistance ofH. polyanthema was consistent with its large seedlings (via large seeds) and low initial fecundity. The study highlights the importance of the interaction between ecophysiology-morphology and demography in determining the recruitment strategies of plants.  相似文献   

17.
Aboveground disturbances are common in dynamic riparian environments, and Salix nigra is well adapted with a vigorous resprouting response. Soil moisture stresses are also common, and S. nigra is flood tolerant and drought sensitive. The objective of this study was to quantify nonstructural carbohydrate (NSC) reserves in S. nigra following shoot removal and soil moisture treatments. NSC reserves provide energy for regeneration of shoot tissue until new functional leaves are developed. Three soil moisture treatments: well-watered (W), periodic flooding (F) and drought (D); and three shoot removal treatments: no shoots removed (R0), partial shoot removal (R1), and complete shoot removal (R2) were applied. Plants were harvested when new shoot development was observed (day 13). Statistical significance in the 3 × 3-factorial design was determined in two-factor ANOVA at P < 0.05. Both roots and cuttings were important reservoirs for NSC during resprouting response, with decreases in root (31%) and cutting (14%) biomass in R2 compared to R0. Rapid recovery of photosynthetic surface area (from 15 to 37% of R0) was found in R1. A clear pattern of starch mobilization was found in roots in R0, R1 and R2, with lowest root starch concentration in W, F higher than W, and D higher than F. Shoot starch concentration was lower in F and D compared to W in R0, however, in R1 shoot starch was reduced in W compared to F and D, possibly indicating reduced rates of translocation during soil moisture stress. Evidence of osmotic adjustment was found in roots and shoots with higher total ethanol-soluble carbohydrates (TESC) during soil moisture stress in F and D treatments. Total plant NSC pool was greater in F and D treatments compared to W, and progressively reduced from R0 to R1 to R2. Results indicated negative effects of drought, and to a lesser extent periodic flooding on resprouting response in S. nigra, with implications for reduced survival when exposed to combined stresses of aboveground disturbance and soil moisture.  相似文献   

18.
The role of endogenous polyamines in the control of NaCl-inhibited growth of rice seedlings was investigated. Putrescine, spermidine and spermine were all present in shoots and roots of rice seedlings. NaCl treatment did not affect spermine levels in shoots and roots. Spermidine levels in shoots and roots were increased with increasing concentrations of applied NaCl. NaCl at a concentration of 50 mM, which caused only slight growth inhibition, drastically lowered the level of putrescine in shoots and roots. Addition of precursors of putrescine biosynthesis (L-arginine and L-ornithine) resulted in an increase in putrescine levels in NaCl-treated shoots and roots, but did not allow recovery of the growth inhibition of rice seedlings induced by NaCl. Pretreatment of rice seeds with putrescine caused an increase in putrescine level in shoots, but could not alleviate the inhibition effect of NaCl on seedling growth. The current results suggest that endogenous polyamines may not play a significant role in the control of NaCl-inhibited growth of rice seedlings.Abbreviations PUT putrescine - SPD spermidine - SPM spermine  相似文献   

19.
Transformed hairy roots were efficiently induced from seedlings of Taraxacum platycarpum by infection with Agrobacterium rhizogenes 15834. Root explants produced transformed roots at a higher frequency (76.5±3.5%) as compared to stem (32.7±4.8%) or cotyledon (16.2±5.7%). Hairy roots exhibited active elongation with high branching of roots on growth regulator-free medium. The competence of plant regeneration from non-transformed adventitious roots and transformed hairy roots was compared. The frequency of adventitious shoot formation from transformed roots was much higher (88.5±9.8%) than that of non-transformed roots (31.7 ±9.5%) on hormone-free medium. Rooting of hairy root-derived adventitious shoots occurred easily on growth regulator-free medium but no rooting was observed on non-transformed shoots. The stable introduction of rol genes into Taraxacum plants was confirmed by PCR and Southern hybridization. Transgenic plantlets showed considerable differences in their morphology when compared to the corresponding wild-type (non-transgenic) plants. Plantlets formed from transformed roots had numerous fibrous roots with abundant lateral branches instead of the thickened taproots in non-transformed plants. The differences observed may reflect the modification of morphological root characters by introduction of rol genes.Communicated by M.R. Davey  相似文献   

20.
Hager HA 《Oecologia》2004,140(1):140-149
Non-native plants can have adverse effects on ecosystem structure and processes by invading and out-competing native plants. I examined the hypothesis that mature plants of non-native and native species exert differential effects on the growth of conspecific and heterospecific seedlings by testing predictions that (1) invasive vegetation has a stronger suppressive effect on seedlings than does native vegetation, (2) seedlings of invasive species are better able to grow in established vegetation than are native seedlings, and (3) invasive species facilitate conspecific and inhibit heterospecific seedling growth. I measured growth rates and interaction intensities for seedlings of four species that were transplanted into five wetland monoculture types: invasive Lythrum salicaria; native L. alatum, Typha angustifolia, T. latifolia; unvegetated control. Invasive L. salicaria had the strongest suppressive effect on actual and per-individual bases, but not on a per-gram basis. Seedlings of T. latifolia were better able to grow in established vegetation than were those of L. salicaria and T. angustifolia. These results suggest that L. salicaria is not a good invader of established vegetation, but once established, it is fairly resistant to invasion. Thus, it is likely that disturbance of established vegetation facilitates invasion by L. salicaria, allowing it to compete with other species in even-aged stands where its high growth rate and consequent production of aboveground biomass confer a competitive advantage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号