首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The survival of indigenous and introduced strains of Azorhizobium caulinodans in flooded soil and in the rice rhizosphere, where in situ Sesbania rostrata was incorporated before the rice crop, is reported. The azorhizobia studied were both root and stem nodulating. In a pot experiment, two crop cycles each of inoculated and noninoculated Sesbania-rice were compared with two crop cycles of flooded fallow-rice. In a field experiment, the effect of repeated incorporation of in situ S. rostrata in the Sesbania-rice sequence was studied. Soils in which inoculated S. rostrata was incorporated contained about 3,000 times more azorhizobia than did soils in the flooded fallow treatment and about 50 times more azorhizobia than did soils in the noninoculated Sesbania treatment. Azorhizobial numbers in the inoculated Sesbania treatment declined toward rice harvest but remained much higher than in the flooded fallow-rice treatment. Repeated incorporation of S. rostrata increased the population density of indigenous soil azorhizobia, whereas the population of inoculated strain ORS571 (Strr Spcr) declined to an undetectable level; this finding suggested low competitiveness by the introduced strain. In the incorporated Sesbania treatment, the rice rhizosphere harbored significantly more A. caulinodans and supported higher nitrogenase activity per plant than did the rhizosphere of the flooded fallow-rice treatment. Sterile rice seedlings inoculated with A. caulinodans showed nitrogenase activity comparable to that of seedlings inoculated with Azospirillum lipoferum 34H, a rice root isolate. Rhizobia from Sesbania aculeata, Sesbania sesban, a Trifolium sp., and Vigna unguiculata did not support appreciable nitrogenase activity.  相似文献   

2.
Four field experiments were conducted to study the effect of Sesbania rostrata and Aeschynomene afraspera as rotational and green manure crops on the population dynamics of Hirschmanniella mucronata and H. oryzae, and subsequent rice yields. The sequential cropping of the legumes with rice controlled both nematode species. In two experiments, yield of rice was related to the nematode population denisites at planting and harvesting of the second rice crop (R² = 0.391, P < 0.001, and R² = 0.57, P < 0.001), regardless of the treatments. Rice yield increases were attributed to nutritional effect of the green manure and the reduction of the nematode populations or the modification of a factor(s) linked to the nematode populations induced by their cropping. As the two leguminous crops do not generate direct return, using them to control the rice-root nematodes was not economical, despite the significant yield increase obtained.  相似文献   

3.
In the recent past considerable attention is paid to minimize dependence on purchased inputs such as inorganic nitrogen fertilizer. Green manure in the form of flood-tolerant, stem-nodulatingSesbania rostrata andAeschynomene afraspera is an alternative N source for rice, which may also increase N use efficiency. Therefore research was conducted to determine the fate of N applied to lowland rice (Oryza sativa L.) in the form ofSesbania rostrata andAeschynomene afraspera green manure and urea in two field experiments using15N labeled materials.15N in the soil and rice plant was determined, and15N balances established. Apparent N recoveries were determined by non-tracer method. 15N recoveries averaged 90 and 65% of N applied for green manure and urea treatments, respectively. High partial pressures of NH3 in the floodwater, and high pH probably resulted from urea application and favoured losses of N from the urea treatment. Results show that green manure N can supply a substantial proportion of the N requirements of lowland rice. Nitrogen released fromSesbania rostrata andAeschynomene afraspera green manure was in synchrony with the demand of the rice plant. The effect of combined application of green manure and urea on N losses from urea fertilizer were also investigated. Green manure reduced the N losses from15N labeled urea possibly due to a reduction in pH of the floodwater. Positive added N interactions (ANIs) were observed. At harvest, an average of 45 and 25% of N applied remained in the soil for green manure and urea, respectively.Contribution from IRRI, Los Baños, Philippines and Justus-Liebig-University, Giessen, GermanyContribution from IRRI, Los Baños, Philippines and Justus-Liebig-University, Giessen, Germany  相似文献   

4.
Phage susceptibility pattern and its correlation with lipopolysaccharide (LPS) and plasmid profiles may help in understanding the phenotypic and genotypic diversity among highly promiscuous group of rhizobia nodulating Sesbania spp.; 43 phages were from two stem-nodulating bacteria of S. rostrata and 16 phages were from root-nodulating bacteria of S. sesban, S. aegyptica and S. rostrata. Phage susceptibility pattern of 38 Sesbania nodulating bacteria was correlated with their LPS rather than plasmid profiles. Different species of bacteria (A. caulinodans- ORS571, SRS1-3 and Sinorhizobium saheli- SRR907, SRR912) showing distinct LPS subtypes were susceptible to different group of phages. Phages could also discriminate the strains of Si. saheli (SSR312, SAR610) possessing distinct LPS subtypes. Phages of Si. meliloti (SSR302) were strain-specific. All the strains of R. huautlense having incomplete LPS (insignificant O-chain) were phage-resistant. In in vitro assay, 100% of the phages were adsorbed to LPS of indicator bacterium or its closely related strain(s) only. These observations suggest the significance of LPS in phage specificity of Sesbania nodulating rhizobia. Highly specific phages may serve as biological marker for monitoring the susceptible bacterial strains in culture collections and environment.  相似文献   

5.
Grain legumes and green manures as pre-rice crops in Northeast Thailand   总被引:1,自引:0,他引:1  
The loss of dry matter (ash corrected), nitrogen (N) and carbon (C) from residues of several tropical legume species was monitored using litter bags in the field over a three-month period in Northeast Thailand. This work was linked to an experiment in a farmers' field where the residual benefits of the same legume species grown before flooded rice were measured. Litter bags were incorporated in the flooded rice plots at the same time as residue incorporation in the field experiment. The species studied were Sesbania rostrata, Aeschynomene afraspera and a multi-purpose cowpea variety (Vigna unguiculata cv KVC-7). In the case of S. rostrata the breakdown of fresh and oven-dried residues and of residues buried at depths of 2–3 cm and 15 cm was also compared.Although the initial N and C concentrations were similar for all the residues they exhibited differing dry matter, N and C loss patterns. With Sesbania rostrata, 80% of the N was lost from the residues after 20 days, however, there was only a 40% decline in C and weight during the same period. The rate and amount of N loss from Aeschynomene afraspera residues was much less than with S. rostrata, declining by approximately 35% during the first 40 days. There were marked differences in rates of N loss from stem and leaves of A. afraspera indicating that monitoring the decomposition of stem and leaves combined can be misleading. In multi-purpose cowpea, loss patterns of dry matter, N and C were all similar and 50–65% was lost after 40 days burial. There was little difference between breakdown of fresh and oven-dried S. rostrata residues nor were there noticeable differences between residues incorporated superficially (2–3 cm) and buried at 15 cm. Although both %N and lignin:N ratios correlated well with weight and N loss from the residues, this was only the case when leaf and stem material were analyzed separately for A. afraspera.Despite the slower rate and smaller total amount of N released from the A. afraspera residues compared with the S. rostrata residues, a similar amount and proportion (around 20 kg N ha-1 or 22–28%) of the N was recovered from both residues by a crop of rice planted at the time of residue incorporation. This suggests a considerably higher use efficiency by rice of the N released from the A. afraspera residues (approximately 40%) compared with that for S. rostrata (30%).  相似文献   

6.
Sesbania rostrata, an annual tropical legume, has been found to be tolerant to heavy metals, with an unknown mechanism. It is a promising candidate species for revegetation at mine tailings. In this study, sequential extractions with five buffers and strong acids were used to extract various chemical forms of cadmium and copper in S. rostrata, with or without Cd or Cu treatments, so that the mechanisms of tolerance and detoxification could be inferred. Both metals had low transition rates from roots to the aboveground of S. rostrata. The transition ratio of Cd (4.00%) was higher than that of Cu (1.46%). The proportion of NaCl extracted Cd (mostly in protein-binding forms) increased drastically in Cd treated plants from being undetectable in untreated plants. This suggests that Cd induced biochemical processes producing protein-like phytochelatins that served as a major mechanism for the high Cd tolerance of S. rostrata. The case for Cu was quite different, indicating that the mechanism for metal tolerance in S. rostrata is metal-specific. The proportion of water-insoluble Cu (e.g. oxalate and phosphate) in roots increased significantly with Cu treatment, which partially explains the tolerance of S. rostrata to Cu. However, how S. rostrata copes with the high biotic activity of inorganic salts of Cu, which increased in all parts of the plant under Cu stress, is a question for future studies. Sesbania rostrata is among the very few N-fixing plants tolerant to heavy metals. This study provides evidence for the detoxification mechanism of metals in Sesbania rostrata.  相似文献   

7.
Rice (Oryza sativa) is a staple food in Thailand and, in addition, feeds around one half of the world’s population. Therefore, diseases of rice are of special concern. Rice is destroyed by 2 main pathogens, Fusarium oxysporum and Pyricularia oryzae the causative agents of root rot and blast in rice respectively. These pathogens result in low grain yield in Thailand and other Southeast Asian countries. Soil samples were taken from paddy fields in Northern Thailand and bacteria were isolated using the soil dilution plate method on Nutrient agar. Isolation yielded 216 bacterial isolates which were subsequently tested for their siderophore production and effectiveness in inhibiting mycelial growth in vitro of the rice pathogenic fungi; Alternaria sp., Fusarium oxysporum, Pyricularia oryzae and Sclerotium sp., the causal agent of leaf spot, root rot, blast and stem rot in rice. It was found that 23% of the bacteria isolated produced siderophore on solid plating medium and liquid medium, In dual culture technique, the siderophore producing rhizobacteria showed a strong antagonistic effect against the Alternaria (35.4%), Fusarium oxysporum (37.5%), Pyricularia oryzae (31.2%) and Sclerotium sp. (10.4%) strains tested. Streptomyces sp. strain A 130 and Pseudomonas sp. strain MW 2.6 in particular showed a significant higher antagonistic effect against Alternaria sp. while Ochrobactrum anthropi D 5.2 exhibited a good antagonistic effect against F. oxysporum. Bacillus firmus D 4.1 inhibited P. oryzae and Kocuria rhizophila 4(2.1.1) strongly inhibited Sclerotium sp. P. aureofaciens AR 1 was the best siderophore producer overall and secreted hydroxamate type siderophore. This strain exhibits an in vitro antagonistic effect against Alternaria sp., F. oxysporum and P. oryzae. Siderophore production in this isolate was maximal after 15 days and at an optimal temperature of 30°C, yielding 99.96 ± 0.46 μg ml?1 of siderophore. The most effective isolates were identified by biochemical tests and molecular techniques as members of the Genus Bacillus, Pseudomonas and Kocuria including B. firmus D 4.1, P. aureofaciens AR1 and Kocuria rhizophila 4(2.1.1). The study demonstrated antagonistic activity towards the target pathogens discussed and are thus potential agents for biocontrol of soil borne diseases of rice in Thailand and other countries.  相似文献   

8.
Summary Sesbania rostrata is a wild annual legume that grows in West Africa in waterlogged soils during the rainy season. This plant can bear N2-fixing nodules on roots and stems at the same time. Stem nodules result from the infection of predetermined sites (dormant root primordia distributed on the stems) by a specific strain ofRhizobium. The mode of infection ofS. rostrata is unique among the legumes, as it involves both an intercellular invasion by rhizobia and the development of infection threads. Inoculation of the stems is achieved by spraying a liquid culture of the specificRhizobium on the shoots. Properly inoculatedS. rostrata can fix up to 200 kg N2/ha in 50 days. A unique property ofS. rostrata is to nodulate and fix nitrogen even when the amount of combined nitrogen in the soil is high. Based on 1 m2 microplot trials conducted in Senegal during the summer the use ofS. rostrata as green manure doubled rice yields. These results were later confirmed in trials conducted on 25 m2 plots. In winter, when the day length is shorter,S. rostrata grows poorly but flowers readily.Sesbania rostrata trials should be conducted in two successive stages: (1) assessment ofS. rostrata behaviour in a given geographic region; (2) assessment of the effect ofS. rostrata green manure on rice yields.
Observaciones sobre el uso de Sesbania rostrata como abono verde en arrozales
Resumen Sesbania rostrata es una planta leguminosa anual que crece espontaneamente en el Oeste de Africa en suelos inundados durante la temporada de lluvias. Esta planta puede formar nódulos fijadores de nitrógeno en raíces y tallos simultaneamente. Los nódulos en tallos resultan de la infección por una cepa específica deRhizobium de lugares predeterminados (primordios de raíces latentes, distribuidos en el tallo). El tipo de infección que ocurre enS. rostrata es único en leguminosas ya que aparte de una invasión intercelular deRhizobium conlleva el desarrollo de hebras de infección. La inoculación de los tallos se realiza pulverizando sobre estos una cultura líquida delRhizobium especifico mediante un spray.Sesbania rostrata adecuadamente inoculada puede fijar hasta 200 kg/ha de nitrógeno en cincuenta días. Una propiedad singular de esta planta es su capacidad para nodular y fijar nitrógeno aún cuando el nitrógeno combinado existente en el suelo sea elevado. En experiencias realizadas durante el verano en Senegal en pequeñas parcelas de un metro cuadrado el uso deS. rostrata como abono verde dobló la cosecha de arroz. Estos resultados se confirmarén más tarde en parcelas experimentales de 25 m2. Durante el invierno cuando el dia se acorta nel crecimiento deS. rostrata se ve frenado y tiene lugar la floración. Los próximos ensayos conS. rostrata deberían de realizarse a dos nivels: (1) estudio del comportamiento deS. rostrata en una determinada área geográfica; (1) estudio del efecto de la utilización deS. rostrata como abono verde en arrozales.

Observations sur l'utilisation de Sesbania rostrata comme engrais vert dans les rizières
Résumé Sesbania rostrata est une légumineuse annuelle poussant dans les sols inondés de l'Afrique de l'Ouest pendant la saison des pluies. Cette plante peut porter des nodules fixateurs d'azote à la fois sur les racines et sur les tiges. Les nodules de tige proviennent de l'infection de sites prédéterminés (primordia de racines répartis sur les tiges) par une souche spécifique deRhizobium. Le mode d'infection deS. rostrata est unique parmi les légumineuses; il comporte en effet deux étapes: invasion intercellulaire par lesRhizobiums et développement de cordons d'infection. On inocule les tiges en pulvérisant sur les parties aériennes une culture liquide duRhizobium spécifique. S'il est convenablement inoculé,S. rostrata peut fixer jusqu'à 200 kg N2/ha en 50 jours. Une caractéristique remarquable deS. rostrata est de noduler et de fixer l'azote même en présence de doses élevées d'azote combiné dans le sol. Des expériences conduites pendant l'été sur des microparcelles de 1 m2 au Sénégal ont montré que l'utilisation deS. rostrata comme engrais vert pourrait doubler les rendements du riz. Ces résultats ont été confirmés ultérieurement sur des parcelles de 25 m2. En hivers, lorsque la durée du jour est plus courte,S. rostrata se développe mal et fleurit facilement. Les essais à conduire surS. rostrata doivent comporter deux étapes: (1) évaluation du comportement deS. rostrata dans une région géographique donnée; (2) évaluation de l'effet de l'emploi de l'engrais vertS. rostrata sur les rendements du riz.
  相似文献   

9.
A novel pathway of invasion of the legume Sesbania rostrata by Azorhizobium caulinodans is described that involves colonization of the root xylem, possibly following entry into the natural fissures created during emergence of lateral roots. Azorhizobia were detected microscopically, and their presence confirmed by the expression of a lacZ reporter gene. We have shown that rhizobial Nod factors are not required for either xylem colonization or for crack-entry of lateral roots. We discuss the extent to which this discovery of xylem colonization by azorhizobia is likely to improve our understanding of both symbiosis and of pathogenicity in plant–bacterial interactions.  相似文献   

10.
A large population of Azorhizobium caulinodans was present on Sesbania rostrata; up to 5 × 10−5 cm−2 were found on leaves and fewer were found on flowers. Although A. caulinodans was also present on the leaves of Sesbania aculeata (nonhost), the populations were much smaller than that observed on S. rostrata. The population of S. aculeata rhizobia on host leaves was less than 30 cm−2, and their presence on host flowers was sporadic. Aeschynomene afraspera and Aeschynomene aspera rhizobia, which are profusely stem nodulating, were found on the leaves of host and nonhost plants and on the flowers of host plants, but, Aeschynomene pratensis and Aeschynomene sensitiva rhizobia were not found on the leaves and flowers of host plants.  相似文献   

11.
【目的】研究大肠杆菌tRNA合成底物类似物4,6-二氨基-2-巯基嘧啶功能化的金纳米粒子(gold nanoparticles,AuNPs)对革兰氏阴性多药耐药细菌的抗菌特性。【方法】以4,6-二氨基-2-巯基嘧啶为表面配体合成AuNPs,采用肉汤稀释法测定其对4种临床分离的革兰氏阴性多药耐药细菌的最低抑菌浓度(MIC)。通过不同浓度AuNPs处理后经平板计数绘制不同菌株的时间-杀菌动力学曲线。以铜绿假单胞菌为代表菌株,采用激光共聚焦显微镜、透射电子显微镜和凝胶电泳分析AuNPs对细菌细胞组分的损伤。通过亚致死浓度反复诱导评估细菌对AuNPs的耐药性演化。并以MTT实验初步评估了AuNPs对哺乳动物细胞的生物相容性。【结果】4,6-二氨基-2-巯基嘧啶介导的AuNPs平均粒径为6.8nm,zeta电位为+38.4mV。该AuNPs对4种临床分离的革兰氏阴性多药耐药细菌均表现出时间和浓度依赖的抗菌活性,MIC值介于4–8μg/mL之间。抗菌机制研究显示AuNPs主要通过诱导细菌细胞膜损伤和DNA断裂导致细菌死亡。耐药性演化评估发现细菌在为期30d的反复诱导下也基本不会对该AuNPs产生耐...  相似文献   

12.
Malate oxidation supported C2H2 reduction by bacteroids isolated from Sesbania rostrata stem nodules. Optimal activity reached 7.5 nanomoles per minute per milligram of dry weight and was in the same order of magnitude as that observed with succinate but always required a lower O2 tension. Malate dehydrogenase (EC 1.1.1.37), purified 66-fold from bacteroids, actively oxidized malate (Km = 0.19 millimolar). Malic enzyme (EC 1.1.1.39) from Sesbania bacteroids had a lower affinity for malate (Km = 2.32 millimolar). Both enzymes exclusively required NAD+ as cofactor and required an alkaline pH for optimal activity. 2-Oxoglutarate and oxalate, inhibiting malate dehydrogenase and malic enzyme, respectively, were used to specifically block each malate oxidation pathway in bacteroids. The predominance of malate dehydrogenase activity to support bacteroid N2 fixation was demonstrated. The inhibition of O2 consumption by 2-oxoglutarate confirmed the importance of the malate dehydrogenase pathway in malate oxidation. It is proposed that the utilization of malate, with regard to O2, is important in a general strategy of this legume to maintain N2 fixation under O2 limited conditions.  相似文献   

13.
14.
Ståhl  Lena  Nyberg  Gert  Högberg  Peter  Buresh  Roland J. 《Plant and Soil》2002,243(1):103-117
The effects of planted fallows of Sesbania sesban (L.) Merr. and Calliandra calothyrsus (Meissner) on soil inorganic nitrogen dynamics and two subsequent maize crops were evaluated under field conditions in the highlands of eastern Kenya. Continuous unfertilised maize, maize/bean rotation and natural regrowth of vegetation (weed fallow) were used as control treatments. The proportion of symbiotic N2-fixation was estimated by measuring both leaf 15N enrichment and whole-plant 15N enrichment by the 15N dilution technique for Sesbania and Calliandra, using Eucalyptus saligna (Sm.) and Grevillea robusta (A. Cunn) as reference species. Above- and below-ground biomass and N contents were examined in Sesbania, Calliandra, Eucalyptus and Grevillea 22 months after planting. Both the content of inorganic N in the topsoil and the quantity of N mineralised during rainy seasons were higher after the Sesbania fallows than after the other treatments. Compared to the continuous unfertilised maize treatment, both residual crop yields were significantly higher when mineral N (one application of 60 kg N ha–1) was added. Furthermore, the second crop following the Sesbania fallow was significantly higher than the continuous maize crop. The above-ground biomass of the trees at final harvest were 31.5, 24.5, 32.5 and 43.5 Mg ha–1 for the Sesbania, Calliandra, Grevillea and Eucalyptus, respectively. For the total below-ground biomass the values for these same tree species were 11.1, 15.5, 17.7, and 19.1 Mg ha–1, respectively, of which coarse roots (>2 mm), including tap roots, amounted to 70–90%. About 70–90% of the N in Sesbania, and 50–70% in Calliandra, was derived from N2-fixation. Estimates based on leaf 15N enrichment and whole-plant 15N enrichment were strongly correlated. The N added by N2-fixation amounted to 280–360 kg N ha–1 for Sesbania and 120–170 kg N ha–1 for Calliandra, resulting in a positive N balance after two maize cropping seasons of 170–250 kg N ha–1 and 90–140 kg N ha–1, for Sesbania and Calliandra, respectively. All the other treatments gave negative N balances after two cropping seasons. We conclude that Sesbania sesban is a tree species well suited for short duration fallows due to its fast growth, high nutrient content, high litter quality and its ability to fix large amounts of N2 from the atmosphere.  相似文献   

15.
The mutualism pattern of the dark septate endophyte (DSE) Harpophora oryzae in rice roots and its biocontrol potential in rice blast disease caused by Magnaporthe oryzae were investigated. Fluorescent protein-expressing H. oryzae was used to monitor the colonization pattern. Hyphae invaded from the epidermis to the inner cortex, but not into the root stele. Fungal colonization increased with root tissue maturation, showing no colonization in the meristematic zone, slight colonization in the elongation zone, and heavy colonization in the differentiation zone. H. oryzae adopted a biotrophic lifestyle in roots accompanied by programmed cell death. Real-time PCR facilitated the accurate quantification of fungal growth and the respective plant response. The biocontrol potential of H. oryzae was visualized by inoculation with eGFP-tagged M. oryzae in rice. H. oryzae protected rice from M. oryzae root invasion by the accumulation of H2O2 and elevated antioxidative capacity. H. oryzae also induced systemic resistance against rice blast. This systemic resistance was mediated by the OsWRKY45-dependent salicylic acid (SA) signaling pathway, as indicated by the strongly upregulated expression of OsWRKY45. The colonization pattern of H. oryzae was consistent with the typical characteristics of DSEs. H. oryzae enhanced local resistance by reactive oxygen species (ROS) and high antioxidative level and induced OsWRKY45-dependent SA-mediated systemic resistance against rice blast.  相似文献   

16.
Sesbania rostrata developed nitrogen fixing nodules on the stem after spraying the plants with the bacterial culture TCSR 1. The number of stem nodules at 55 days after sowing was about 1200. Plants with stem nodules had a significantly reduced number of root nodules. The biomass of S. rostrata was comparable to the locally well adapted non-stem nodulating species S. aculeata. The %N and total nitrogen content were highest in S. rostrata compared to the other three species studied.  相似文献   

17.
18.
The stem-nodulating tropical legume Sesbania rostrata is a promising green manure species for low input rice-farming systems in lowland areas. However, its success as biofertilizer depends on its biomass production and N2 fixation. Nutrient imbalances and soils low in available nutrients can considerably affect biofertilizer production. Use of mineral N, P, and K fertilizers in growing S. rostrata as biofertilizer for lowland rice was therefore evaluated in pot experiments, and in the fields in Central Luzon, Philippines. Two soils low in Olsen P (3–7.3 mg kg–1) and exchangeable K (0.05–0.08 meq 100g-1) were used. Increasing amounts of N (0, 10, 20, 30, and 40 mg kg-1), P (0, 50, and 100 mg kg-1), and K (0, 100, 200, and 300 mg kg-1) were applied to S. rostrata grown in the greenhouse, whereas small amounts of N, P, and K fertilizers (30, 15, and 33 kg ha-1, respectively) were applied in the field.Mineral N application depressed nodulation and N2 fixation in roots. It however, stimulated nodulation and N2 fixation in stems. Applying 30 kg N ha-1 as urea increased total N accumulation by S. rostrata and yield of the subsequent rice crop (IR64). Applied P and K both stimulated growth, nodulation, and N2 fixation of S. rostrata. Nitrogen accumulation in P- and K-fertilized S. rostrata was about 40% higher than that in nonfertilized green manure. Thus integration of mineral N, P, and K fertilizers in a green manure-based rice-farming system can considerably improve biofertilizer production and increase rice grain yield.  相似文献   

19.
A Rhizobium strain isolated from stem nodules of the legume Sesbania rostrata was shown to grow on atmospheric nitrogen (N2) as the sole nitrogen source. Non-N2-fixing mutants isolated directly on agar plates formed nodules that did not fix N2 when inoculated into the host plant.  相似文献   

20.
Plant innate immunity is mediated by pattern recognition receptors (PRRs) and intracellular NB-LRR (nucleotide-binding domain and leucine-rich repeat) proteins. Overexpression of the endoplasmic reticulum (ER) chaperone, luminal-binding protein 3 (BiP3) compromises resistance to Xanthomonas oryzae pv. oryzae (Xoo) mediated by the rice PRR XA21 [12]. Here we show that BiP3 overexpression also compromises resistance mediated by rice XA3, a PRR that provides broad-spectrum resistance to Xoo. In contrast, BiP3 overexpression has no effect on resistance mediated by rice Pi5, an NB-LRR protein that confers resistance to the fungal pathogen Magnaporthe oryzae (M. oryzae). Our results suggest that rice BiP3 regulates membrane-resident PRR-mediated immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号