共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
3.
目的:建立小鼠胚胎干细胞体外定向分化为血管内皮细胞和造血细胞的体系,并验证诱导后2种细胞的表面分子特征。方法:以小鼠胚胎成纤维细胞为饲养层,首先在无血清培养基StemPro中加入骨形态发生蛋白4(BMP4)、激活素A、碱性成纤维细胞生长因子(FGF-Basic)和血管内皮细胞生长因子(VEGF),诱导小鼠胚胎干细胞系R1/E 4 d后形成拟胚体;再将拟胚体消化后与OP9-DL1基质细胞共孵育,分别用干细胞因子(SCF)、VEGF和SCF、FLt3、白细胞介素3(IL-3)诱导向内皮和造血2个方向分化,并以CD31、CD45、CD144、Kit、CD201作为表面标志,流式检测诱导后细胞的表面分子特征和诱导效率;诱导10 d后免疫组化染色,进行内皮细胞的形态学鉴定。结果:诱导分化10 d后,免疫组化染色观察到多个内皮管状结构,流式检测CD31^+的内皮细胞比例为1.35%±0.05%,进一步分析CD31^+CD144^+CD45^-群体,有3.0%±0.2%的细胞表型为Kit^+CD201^+,提示该部分细胞可能是处于分化上游的内皮干祖细胞;CD45^+的造血细胞比例为35.0%±0.5%,其中0.35%±0.05%的细胞表达Kit和CD201,提示该部分细胞可能是处于分化上游的造血干祖细胞。结论:本研究将胚胎干细胞诱导为内皮细胞和造血细胞,并且能诱导出具有内皮、造血干祖细胞分子特征的细胞,可作为理想的体外诱导分化体系。 相似文献
4.
5.
Xiaolan Lian Yongpin Dong Mingyi Zhao Yajie Liang Weiwei Jiang Wenfang Li Lina Zhang 《Journal of cellular biochemistry》2019,120(7):11401-11408
We used RNA-sequencing (RNA-Seq) technology and an old hematopoietic stem and progenitor cells (HSPCs) model in vitro to analyze differential expressions of mismatch repair (MMR)-related genes in aged HSPCs, so as to explore the mechanism of DNA MMR injury in hematopoietic stem cells (HSC) aging. In this study, by combining RNA-seq data and National Center for Biotechnology Information database, we focus on six widely reported MMR genes MSH2, MSH3, MSH6, MLH1, PMS1, PMS2, and five MMR genes with closer ties to HSC aging Pcna, Exo1, Rpa1, Rpa2, and Rpa3 according to the genes functional classification and the related signaling pathway. It is concluded that MMR is closely related to HSC aging. This study provides experimental evidence for future researching MMR in HSC aging. 相似文献
6.
7.
《Cell》2022,185(10):1709-1727.e18
8.
针对造血干/祖细胞体外扩增对培养环境的需求, 结合静/动态培养的特点, 开发了一种新型的生物反应器用于造血干/祖细胞的体外扩增.在该生物反应器内, 采用SCF TPO Flt-3细胞因子组合, 比较了静态和循环培养两种方式体外扩增脐血CD34 细胞的效果.培养7 d后, 总细胞分别扩增了(13.86 ± 4.26)和(7.23 ± 2.67)倍, 显示静态培养有利于总细胞的扩增; CD34 细胞扩增倍数、培养物中CD34 细胞含量均相近, 无显著性差异; 而CD34 CD38-细胞扩增倍数以及培养物中CD34 CD38-细胞的百分含量分别为(1.82 ± 0.58)和(3.90 ± 0.85)倍以及(9.45 ± 4.85)和(37.47 ± 14.06)%, 循环培养明显高于静态培养.可见, 在该生物反应器内, 采用静态和循环两种培养方式, 均能实现造血干/祖细胞的体外扩增, 但静态培养促使造血干细胞向定向祖细胞分化, 而循环培养则更有利于早期造血干细胞的扩增. 相似文献
9.
针对造血干/祖细胞体外扩增对培养环境的需求, 结合静/动态培养的特点, 开发了一种新型的生物反应器用于造血干/祖细胞的体外扩增。在该生物反应器内, 采用SCF+TPO+Flt-3细胞因子组合, 比较了静态和循环培养两种方式体外扩增脐血CD34+细胞的效果。培养7 d后, 总细胞分别扩增了(13.86 ± 4.26)和(7.23 ± 2.67)倍, 显示静态培养有利于总细胞的扩增; CD34+细胞扩增倍数、培养物中CD34+细胞含量均相近, 无显著性差异; 而CD34+CD38-细胞扩增倍数以及培养物中CD34+CD38?细胞的百分含量分别为(1.82 ± 0.58)和(3.90 ± 0.85)倍以及(9.45 ± 4.85)和(37.47 ± 14.06)%, 循环培养明显高于静态培养。可见, 在该生物反应器内, 采用静态和循环两种培养方式, 均能实现造血干/祖细胞的体外扩增, 但静态培养促使造血干细胞向定向祖细胞分化, 而循环培养则更有利于早期造血干细胞的扩增。 相似文献
10.
11.
Keane Jared Guillaume Kenswil Adrian Christopher Jaramillo Zhen Ping Si Chen Remco Michiel Hoogenboezem Maria Athina Mylona Maria Niken Adisty Eric Moniqué Johannes Bindels Pieter Koen Bos Hans Stoop King Hong Lam Bram van Eerden Tom Cupedo Marc Hermanus Gerardus Petrus Raaijmakers 《Cell reports》2018,22(3):666-678
12.
13.
Michihiro Kobayashi Sisi Chen Rui Gao Yunpeng Bai Zhong-Yin Zhang 《Cell cycle (Georgetown, Tex.)》2014,13(18):2827-2835
The phosphatases of regenerating liver (PRLs), consisting PRL1, PRL2 and PRL3, are dual-specificity protein phosphatases that have been implicated as biomarkers and therapeutic targets in several solid tumors. However, their roles in hematological malignancies are largely unknown. Recent findings demonstrate that PRL2 is important for hematopoietic stem cell self-renewal and proliferation. In addition, both PRL2 and PRL3 are highly expressed in some hematological malignancies, including acute myeloid leukemia (AML), chronic myeloid leukemia (CML), multiple myeloma (MM) and acute lymphoblastic leukemia (ALL). Moreover, PRL deficiency impairs the proliferation and survival of leukemia cells through regulating oncogenic signaling pathways. While PRLs are potential novel therapeutic targets in hematological malignancies, their exact biological function and cellular substrates remain unclear. This review will discuss how PRLs regulate hematopoietic stem cell behavior, what signaling pathways are regulated by PRLs, and how to target PRLs in hematological malignancies. An improved understanding of how PRLs function and how they are regulated may facilitate the development of PRL inhibitors that are effective in cancer treatment. 相似文献
14.
Yulin Xu Xiangjun Zeng Mingming Zhang Binsheng Wang Xin Guo Wei Shan Shuyang Cai Qian Luo Honghu Li Xia Li Xue Li Hao Zhang Limengmeng Wang Yu Lin Lizhen Liu Yanwei Li Meng Zhang Xiaohong Yu Pengxu Qian He Huang 《蛋白质与细胞》2022,13(11):808
Although widely applied in treating hematopoietic malignancies, transplantation of hematopoietic stem/progenitor cells (HSPCs) is impeded by HSPC shortage. Whether circulating HSPCs (cHSPCs) in steady-state blood could be used as an alternative source remains largely elusive. Here we develop a three-dimensional culture system (3DCS) including arginine, glycine, aspartate, and a series of factors. Fourteen-day culture of peripheral blood mononuclear cells (PBMNCs) in 3DCS led to 125- and 70-fold increase of the frequency and number of CD34+ cells. Further, 3DCS-expanded cHSPCs exhibited the similar reconstitution rate compared to CD34+ HSPCs in bone marrow. Mechanistically, 3DCS fabricated an immunomodulatory niche, secreting cytokines as TNF to support cHSPC survival and proliferation. Finally, 3DCS could also promote the expansion of cHSPCs in patients who failed in HSPC mobilization. Our 3DCS successfully expands rare cHSPCs, providing an alternative source for the HSPC therapy, particularly for the patients/donors who have failed in HSPC mobilization.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13238-021-00900-4. 相似文献
15.
16.
Pedro Gonzalez-Menendez Manuela Romano Hongxia Yan Ruhi Deshmukh Julien Papoin Leal Oburoglu Marie Daumur Anne-Sophie Dumé Ira Phadke Cédric Mongellaz Xiaoli Qu Phuong-Nhi Bories Michaela Fontenay Xiuli An Valérie Dardalhon Marc Sitbon Valérie S. Zimmermann Patrick G. Gallagher Sandrina Kinet 《Cell reports》2021,34(5):108723
17.
《Cell》2023,186(18):3882-3902.e24
18.
Panpan Zhang Qiuping He Dongbo Chen Weixiao Liu Lu Wang Chunxia Zhang Dongyuan Ma Wei Li Bing Liu Feng Liu 《Cell research》2015,25(10):1093-1107
In vertebrates, embryonic hematopoietic stem and progenitor cells (HSPCs) are derived from a subset of endothelial cells, the hemogenic endothelium (HE), through the endothelial-to-hematopoietic transition (EHT). Notch signaling is essential for HSPC development during embryogenesis across vertebrates. However, whether and how it regulates EHT remains unclear. Here, we show that G protein-coupled receptor 183 (Gpr183) signaling serves as an indispensable switch for HSPC emergence by repressing Notch signaling before the onset of EHT. Inhibition of Gpr183 significantly upregulates Notch signaling and abolishes HSPC emergence. Upon activation by its ligand 7α-25-OHC, Gpr183 recruits β-arrestin1 and the E3 ligase Nedd4 to degrade Notch1 in specified HE cells and then facilitates the subsequent EHT. Importantly, 7α-25-OHC stimulation promotes HSPC emergence in vivo and in vitro, providing an attractive strategy for enhancing the in vitro generation of functional HSPCs. 相似文献
19.
The current studies were initiated to investigate whether excessive oxidative stress exerts its antisteroidogenic action through modulation of oxidant-sensitive mitogen-activated protein kinase (MAPK) signaling pathways. Western blot analysis indicated that aging caused increased phosphorylation and activation of rat adrenal p38 MAPK, but not the ERK1/2 or JNK1/2. Lipid peroxidation measurements (an index of cellular oxidative stress) indicated that adrenal membranes from young animals contained only minimal levels of endogenous thiobarbituric acid-reactive substances (TBARS), and exposure of membranes to enzymatic and non-enzymatic pro-oxidants enhanced TBARS formation approximately 12- and 20-fold, respectively. The adrenal membranes from old animals showed much more susceptibility to lipid peroxidation and exhibited roughly 4- to 6-fold higher TBARS formation than young controls both under basal conditions and in response to pro-oxidants. Qualitatively similar results were obtained when lipid peroxide formation was measured using a sensitive FOXRS (ferrous oxidation-xylenol orange-reactive substances) technique. We next tested whether aging-induced excessive oxidative insult alters steroidogenesis through modulation of MAPK signaling pathway. Treatment of adrenocortical cells from old rats with specific p38 MAPK inhibitors restored Bt(2)cAMP-stimulated steroidogenesis approximately 60-70% of the value seen in cells of young animals. Likewise, pretreatment of cells with reactive oxygen species (ROS) scavengers MnTMPyP and N-acetyl cysteine also partially rescued age-induced loss of steroid production. In contrast, simultaneous treatment of cells with ROS scavengers and p38 MAPK inhibitor did not produce any additional effect suggesting that both types of inhibitors exert their stimulatory action through inhibition of p38 MAPK activation. Collectively, these results indicate that p38 MAPK functions as a signaling effector in oxidative stress-induced inhibition of steroidogenesis during aging. 相似文献
20.
In this study, we have showed that aortic endothelial cells (GM7372A cell line) express CD44v10 [a hyaluronan (HA) receptor], which is significantly enriched in cholesterol-containing lipid rafts (characterized as caveolin-rich plasma membrane microdomains). HA binding to CD44v10 promotes recruitment of the cytoskeletal protein, ankyrin and inositol 1,4,5-triphosphate (IP3) receptor into cholesterol-containing lipid rafts. The ankyrin repeat domain (ARD) of ankyrin is responsible for binding IP3 receptor to CD44v10 at lipid rafts and subsequently triggering HA/CD44v10-mediated intracellular calcium (Ca2+) mobilization leading to a variety of endothelial cell functions such as nitric oxide (NO) production, cell adhesion and proliferation. Further analyses indicate (i) disruption of lipid rafts by depleting cholesterol from the membranes of GM7372A cells (using methyl-beta-cyclodextrin treatment) or (ii) interference of endogenous ankyrin binding to CD44 and IP3 receptor using overexpression of ARD fragments (by transfecting cells with ARDcDNA) not only abolishes ankyrin/IP3 receptor accumulation into CD44v10/cholesterol-containing lipid rafts, but also blocks HA-mediated Ca2+ signaling and endothelial cell functions. Taken together, our findings suggest that CD44v10 interaction with ankyrin and IP3 receptor in cholesterol-containing lipid rafts plays an important role in regulating HA-mediated Ca2+ signaling and endothelial cell functions such as NO production, cell adhesion and proliferation. 相似文献