共查询到20条相似文献,搜索用时 15 毫秒
1.
Kojima M Nishioka N Kusumoto A Yagasaki J Fukuda T Homma M 《Microbiology and immunology》2011,55(2):76-83
Precise regulation of the number and positioning of flagella are critical in order for the mono-polar-flagellated bacterium Vibrio alginolyticus to swim efficiently. It has been shown that, in V. alginolyticus cells, the putative GTPase FlhF determines the polar location and production of flagella, while the putative ATPase FlhG interacts with FlhF, preventing it from localizing at the pole, and thus negatively regulating the flagellar number. In fact, no ΔflhF cells have flagella, while a very small fraction of ΔflhFG cells possess peritrichous flagella. In this study, the mutants that suppress inhibition of the swarming ability of ΔflhFG cells were isolated. The mutation induced an increase in the flagellar number and, furthermore, most Vibrio cells appeared to have peritrichous flagella. The sequence of the flagella related genes was successfully determined, however, the location of the suppressor mutation could not been found. When the flhF gene was introduced into the suppressor mutant, multiple polar flagella were generated in addition to peritrichous flagella. On the other hand, introduction of the flhG gene resulted in the loss of most flagella. These results suggest that the role of FlhF is bypassed through a suppressor mutation which is not related to the flagellar genes. 相似文献
2.
Yilin Wu 《Quantitative Biology.》2015,3(4):199
Collective motion can be observed in biological systems over a wide range of length scales, from large animals to bacteria. Collective motion is thought to confer an advantage for defense and adaptation. A central question in the study of biological collective motion is how the traits of individuals give rise to the emergent behavior at population level. This question is relevant to the dynamics of general self-propelled particle systems, biological self-organization, and active fluids. Bacteria provide a tractable system to address this question, because bacteria are simple and their behavior is relatively easy to control. In this mini review we will focus on a special form of bacterial collective motion, i.e., bacterial swarming in two dimensions. We will introduce some organization principles known in bacterial swarming and discuss potential means of controlling its dynamics. The simplicity and controllability of 2D bacterial behavior during swarming would allow experimental examination of theory predictions on general collective motion. 相似文献
3.
Pyke K 《American journal of botany》1997,84(8):1017-1027
The division of plastids is an important part of plastid differentiation and development and in distinct cell types, such as leaf mesophyll cells, results in large populations of chloroplasts. The morphology and population dynamics of plastid division have been well documented, but the molecular controls underlying plastid division are largely unknown. With the isolation of Arabidopsis mutants in which specific aspects of plastid and proplastid division have been disrupted, the potential exists for a detailed knowledge of how plastids divide and what factors control the rate of division in different cell types. It is likely that knowledge of plant homologues of bacterial cell division genes will be essential for understanding this process in full. The processes of plastid division and expansion appear to be mutually independent processes, which are compensatory when either division or expansion are disrupted genetically. The rate of cell expansion appears to be an important factor in initiating plastid division and several systems involving rapid cell expansion show high levels of plastid division activity. In addition, observation of plastids in different cell types in higher plants shows that cell-specific signals are also important in the overall process in determining not only the differentiation pathway of plastids but also the extent of plastid division. It appears likely that with the exploitation of molecular techniques and mutants, a detailed understanding of the molecular basis of plastid division may soon be a reality. 相似文献
4.
Short FtsZ filaments can drive asymmetric cell envelope constriction at the onset of bacterial cytokinesis 下载免费PDF全文
Qing Yao Andrew I Jewett Yi‐Wei Chang Catherine M Oikonomou Morgan Beeby Cristina V Iancu Ariane Briegel Debnath Ghosal Grant J Jensen 《The EMBO journal》2017,36(11):1577-1589
FtsZ, the bacterial homologue of eukaryotic tubulin, plays a central role in cell division in nearly all bacteria and many archaea. It forms filaments under the cytoplasmic membrane at the division site where, together with other proteins it recruits, it drives peptidoglycan synthesis and constricts the cell. Despite extensive study, the arrangement of FtsZ filaments and their role in division continue to be debated. Here, we apply electron cryotomography to image the native structure of intact dividing cells and show that constriction in a variety of Gram‐negative bacterial cells, including Proteus mirabilis and Caulobacter crescentus, initiates asymmetrically, accompanied by asymmetric peptidoglycan incorporation and short FtsZ‐like filament formation. These results show that a complete ring of FtsZ is not required for constriction and lead us to propose a model for FtsZ‐driven division in which short dynamic FtsZ filaments can drive initial peptidoglycan synthesis and envelope constriction at the onset of cytokinesis, later increasing in length and number to encircle the division plane and complete constriction. 相似文献
5.
J. T. Trevors 《Theorie in den Biowissenschaften》2004,123(1):3-15
Molecular evolution in bacteria is examined with an emphasis on cell division. For a bacterial cell to assemble and then divide required an immense amount of integrated cell and molecular biology structures/functions to be present, such as a stable cellular structure, enzyme catalysis, minimal genome, septum formation at mid-cell and mechanisms to take up nutrients and produce and use energy, as well as store it. The first bacterial cell(s) capable of division must have had complex cell and molecular biology functions. At this stage of evolution, they would not have been primitive cells but would have reached a threshold in evolution where cell division occurred in a regulated manner. 相似文献
6.
Azzolina BA Yuan X Anderson MS El-Sherbeini M 《Protein expression and purification》2001,21(3):393-400
We have cloned the Pseudomonas aeruginosa cell wall biosynthesis and cell division gene cluster that corresponds to the mra operon in the 2-min region of the Escherichia coli chromosome. The organization of the two chromosomal regions in P. aeruginosa and E. coli is remarkably similar with the following gene order: pbp3/pbpB, murE, murF, mraY, murD, ftsW, murG, murC, ddlB, ftsQ, ftsA, ftsZ, and envA/LpxC. All of the above P. aeruginosa genes are transcribed from the same strand of DNA with very small, if any, intragenic regions, indicating that these genes may constitute a single operon. All five amino acid ligases, MurC, MurD, MurE, MurF, and DdlB, in addition to MurG and MraY were cloned in expression vectors. The four recombinant P. aeruginosa Mur ligases, MurC, MurD, MurE, and MurF were overproduced in E. coli and purified as active enzymes. 相似文献
7.
In prokaryotes, FtsZ (the filamentous temperature sensitive protein Z) is a nearly ubiquitous GTPase that localizes in a ring at the leading edge of constricting plasma membranes during cell division. Here we report electron cryotomographic reconstructions of dividing Caulobacter crescentus cells wherein individual arc-like filaments were resolved just underneath the inner membrane at constriction sites. The filaments' position, orientation, time of appearance, and resistance to A22 all suggested that they were FtsZ. Predictable changes in the number, length, and distribution of filaments in cells where the expression levels and stability of FtsZ were altered supported that conclusion. In contrast to the thick, closed-ring-like structure suggested by fluorescence light microscopy, throughout the constriction process the Z-ring was seen here to consist of just a few short (approximately 100 nm) filaments spaced erratically near the division site. Additional densities connecting filaments to the cell wall, occasional straight segments, and abrupt kinks were also seen. An 'iterative pinching' model is proposed wherein FtsZ itself generates the force that constricts the membrane in a GTP-hydrolysis-driven cycle of polymerization, membrane attachment, conformational change, depolymerization, and nucleotide exchange. 相似文献
8.
In both rod-shaped Bacillus subtilis and Escherichia coli cells, Min proteins are involved in the regulation of division septa formation. In E. coli , dynamic oscillation of MinCD inhibitory complex and MinE, a topological specificity protein, prevents improper polar septation. However, in B. subtilis no MinE is present and no oscillation of Min proteins can be observed. The function of MinE is substituted by that of an unrelated DivIVA protein, which targets MinCD to division sites and retains them at the cell poles. We inspected cell division when the E. coli Min system was introduced into B. subtilis cells. Expression of these heterologous Min proteins resulted in cell elongation. We demonstrate here that E. coli MinD can partially substitute for the function of its B. subtilis protein counterpart. Moreover, E. coli MinD was observed to have similar helical localization as B. subtilis MinD. 相似文献
9.
Multicellular organisms regulate cell numbers and cell fate by using asymmetric cell division (ACD) and symmetric cell division (SCD) during their development and to adapt to unfavorable environmental conditions. A stem cell self-renews and generates differentiated cells. In plants, various types of cells are produced by ACD or SCD; however, the molecular mechanisms of ACD or SCD and the cell division mode switch are largely unknown. The moss Physcomitrium (Physcomitrella) patens is a suitable model to study plant stem cells due to its simple anatomy. Here, we report the cell division mode switch induced by abscisic acid (ABA) in P. patens. ABA is synthesized in response to abiotic stresses and induces round-shape cells, called brood cells, from cylindrical protonemal cells. Although two daughter cells with distinct sizes were produced by ACD in a protonemal stem cell on ABA-free media, the sizes of two daughter cells became similar with ABA treatment. Actin microfilaments were spatially localized on the apices of apical stem cells in protonemata on ABA-free media, but the polar accumulation was lost under the condition of ABA treatment. Moreover, ABA treatment conferred an identical cell fate to the daughter cells in terms of cell division activity. Collectively, the results indicate ABA may suppress the ACD characteristics but evoke SCD in cells. We also noticed that ABA-induced brood cells not only self-renewed but regenerated protonemal cells when ABA was removed from the media, suggesting that brood cells are novel stem cells that are induced by environmental signals in P. patens. 相似文献
10.
How cells manage to get equal distribution of their structures and molecules at cell division is a crucial issue in biology. In principle, a feedback mechanism could always ensure equality by measuring and correcting the distribution in the progeny. However, an elegant alternative could be a mechanism relying on self‐organization, with the interplay between system properties and cell geometry leading to the emergence of equal partitioning. The problem is exemplified by the bacterial Min system that defines the division site by oscillating from pole to pole. Unequal partitioning of Min proteins at division could negatively impact system performance and cell growth because of loss of Min oscillations and imprecise mid‐cell determination. In this study, we combine live cell and computational analyses to show that known properties of the Min system together with the gradual reduction of protein exchange through the constricting septum are sufficient to explain the observed highly precise spontaneous protein partitioning. Our findings reveal a novel and effective mechanism of protein partitioning in dividing cells and emphasize the importance of self‐organization in basic cellular processes. 相似文献
11.
Pericycle cells possess proliferative activity long after leaving the root apical meristem. Depending on the developmental stage and external stimuli, pericycle cell division leads to the production of lateral roots, vascular cambium and periderm, and callus. Therefore, pericycle cell division competence underlies root branching and secondary growth, as well as plant regeneration capacity. In this review, we first briefly present an overview of the molecular pathways of the four developmental programs originated, exclusively or partly, from pericycle cells. Then, we provide a review of up-to-date knowledge in the mechanisms determining pericycle cells’ competence to undergo cell division. Furthermore, we discuss directions of future research to further our understanding of the pericycle’s characteristics and functions. 相似文献
12.
Prokaryotic plasmids encode partitioning (par) loci involved in segregation of DNA to daughter cells at cell division. A functional fusion protein consisting of Walker-type ParA ATPase and green fluorescent protein (Gfp) oscillates back and forth within nucleoid regions with a wave period of about 20 minutes. A model is discussed which is based on cooperative non-specific binding of ParA to the nucleoid, and local ParB initiated generation of ParA oligomer degradation products, which act autocatalytically on the degradation reaction. The model yields self-initiated spontaneous pattern formation, based on Turing's mechanism, and these patterns are destroyed by the degradation products, only to initiate a new pattern at the opposite nucleoid region. A recurrent wave thus emerges. This may be a particular example of a more general class of pattern forming mechanisms, based on protein oligomerization upon a template (membranes, DNA a.o.) with resulting enhanced NTPase function in the oligomer state, which may bring the oligomer into an unstable internal state. An effector initializes destabilization of the oligomer to yield degradation products, which act as seeds for further degradation in an autocatalytic process. We discuss this mechanism in relation to recent models for MinDE oscillations in E.coli and to microtubule degradation in mitosis. The study points to an ancestral role for the presented pattern types in generating bipolarity in prokaryotes and eukaryotes. 相似文献
13.
14.
Cell division in bacteria such as Escherichia coli entails changes in the radii of curvature of the invaginating cytoplasmic membrane which culminate in rearrangements of its monolayers. Division therefore risks perturbing transverse and lateral asymmetries and compromising membrane integrity. This leads us to propose that a strong selective pressure exists for a phospholipid translocator that would transfer phospholipids across the cytoplasmic membrane so as to both demarcate the division site and mediate lipid composition during division. This translocase has an affinity for phospholipids with small headgroups and unsaturated acyl chains which it translocates so as to (1) generate changes in the radius of curvature, (2) facilitate septum formation, (3) minimise bilayer disruption during fusion and (4) prevent septum formation at old or inappropriate division sites. We discuss briefly possible candidates for this translocase including ABC transporters and proteins localised to the division site. 相似文献
15.
16.
Gerrit Smit Christiaan C. de Koster Jan Schripsema Herman P. Spaink Anton A. van Brussel Jan W. Kijne 《Plant molecular biology》1995,29(4):869-873
Nodulation (root nodule formation) in legume roots is initiated by the induction of cell divisions and formation of root nodule primordia in the plant root cortex, usually in front of the protoxylem ridges of the central root cylinder. We isolated a factor from the central cylinder (stele) of pea roots which enhances hormone-induced cell proliferation in root cortex explants at positions similar to those of nodule primordia. The factor was identified as uridine. Uridine may act as a morphogen in plant roots at picomolar concentrations. 相似文献
17.
The sink capacity of plant storage organs influences crop economic yield and relates to the number and volume of their cells. To obtain a better understanding of their contributions to the growth of potato microtubers produced in vitro, the number and volume of the cells in the tuber tissues were measured as tubers grew. Two potato cultivars, E-Potato 1 and Mira were employed and the results showed that cortex, perimedulla and pith tissue contributed for about 30, over 65 and up to 3% to the volume of the mature microtuber, respectively. The number of cells and cell volume increased simultaneously as the microtubers grew and the relationships could be described by a power function, Y = aW
b. However, the rate of cell division was greater than the rate of cell expansion and the former contributed more than the latter to the increase in tuber size. The rate of cell division was greatest in the cortex and least in the pith, but, because the perimedulla forms the largest part of the tuber, cell division in this tissue was particularly important. The regulation of cell division to improve the production of usable microtubers is discussed. 相似文献
18.
Samuel J. Craven Samson G.F. Condon Gladys Díaz Vzquez Qiang Cui Alessandro Senes 《The Journal of biological chemistry》2022,298(1)
The FtsLB complex is a key regulator of bacterial cell division, existing in either an off state or an on state, which supports the activation of septal peptidoglycan synthesis. In Escherichia coli, residues known to be critical for this activation are located in a region near the C-terminal end of the periplasmic coiled-coil domain of FtsLB, raising questions about the precise role of this conserved domain in the activation mechanism. Here, we investigate an unusual cluster of polar amino acids found within the core of the FtsLB coiled coil. We hypothesized that these amino acids likely reduce the structural stability of the domain and thus may be important for governing conformational changes. We found that mutating these positions to hydrophobic residues increased the thermal stability of FtsLB but caused cell division defects, suggesting that the coiled-coil domain is a “detuned” structural element. In addition, we identified suppressor mutations within the polar cluster, indicating that the precise identity of the polar amino acids is important for fine-tuning the structural balance between the off and on states. We propose a revised structural model of the tetrameric FtsLB (named the “Y-model”) in which the periplasmic domain splits into a pair of coiled-coil branches. In this configuration, the hydrophilic terminal moieties of the polar amino acids remain more favorably exposed to water than in the original four-helix bundle model (“I-model”). We propose that a shift in this architecture, dependent on its marginal stability, is involved in activating the FtsLB complex and triggering septal cell wall reconstruction. 相似文献
19.
Asano T Yoshioka Y Kurei S Sakamoto W Machida Y;Sodmergen 《The Plant journal : for cell and molecular biology》2004,38(3):448-459
We identified a novel mutation of a nuclear-encoded gene, designated as CRUMPLED LEAF (CRL), of Arabidopsis thaliana that affects the morphogenesis of all plant organs and division of plastids. Histological analysis revealed that planes of cell division were distorted in shoot apical meristems (SAMs), root tips, and embryos in plants that possess the crl mutation. Furthermore, we observed that differentiation patterns of cortex and endodermis cells in inflorescence stems and root endodermis cells were disturbed in the crl mutant. These results suggest that morphological abnormalities observed in the crl mutant were because of aberrant cell division and differentiation. In addition, cells of the crl mutant contained a reduced number of enlarged plastids, indicating that the division of plastids was inhibited in the crl. The CRL gene encodes a novel protein with a molecular mass of 30 kDa that is localized in the plastid envelope. The CRL protein is conserved in various plant species, including a fern, and in cyanobacteria, but not in other organisms. These data suggest that the CRL protein is required for plastid division, and it also plays an important role in cell differentiation and the regulation of the cell division plane in plants. A possible function of the CRL protein is discussed. 相似文献
20.
Based on previous conventional quantitative observations of rat testes, it was proposed that large numbers of gonocytes degenerate after birth and this notion was widely accepted. However, many studies show that neonatal gonocytes display high levels of mitotic activity. In order to resolve the apparent contradiction of increased mitotic activity in gonocytes despite a decrease in their numbers at the neonate stage, quantitative analysis using a marker of suitably higher resolution is required. It has been shown that the vasa protein could be used as a marker of germ cells. In this study, quantitative changes in gonocytes were re-examined using a germ-cell-specific marker in order to delineate more clearly the process of development from gonocytes to spermatogonia after birth. The vasa-positive cells, which correspond to gonocytes and spermatogonia, increased exponentially after birth. This observation suggests that all gonocyte divide actively after birth and do not degenerate as previously believed. Surprisingly, the cell volume of gonocytes decreased during their division. The largest population size was 2000-4000 micro3 at day 2, 1000-2000 micro3 at day 4 and 500-1000 micro3 at day 6. This finding suggests that gonocytes divide in a similar way to cleavage, which can be considered a special mode of fertilized eggs. Judging from the growth of seminiferous tubules and the degree of volume reduction, 60% of the contribution rate is estimated to be due to ordinal cell growth, and 40% due to volume reduction as in cleavage of a fertilized egg. This unique cleavage-like division may contribute to the supply of large numbers of spermatogonia. 相似文献