首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) activity is increased in heart failure (HF), a syndrome characterized by markedly increased risk of arrhythmia. Activation of CaMKII increases peak L-type Ca(2+) current (I(Ca)) and slows I(Ca) inactivation. Whether these events are linked mechanistically is unknown. I(Ca) was recorded in acutely dissociated subepicardial and subendocardial murine left ventricular (LV) myocytes using the whole cell patch clamp method. Pressure overload heart failure was induced by surgical constriction of the thoracic aorta. I(Ca) density was significantly larger in subepicardial myocytes than in subendocardial/myocytes. Similar patterns were observed in the cell surface expression of alpha1c, the channel pore-forming subunit. In failing LV, I(Ca) density was increased proportionately in both cell types, and the time course of I(Ca) inactivation was slowed. This typical pattern of changes suggested a role of CaMKII. Consistent with this, measurements of CaMKII activity revealed a 2-3-fold increase (p < 0.05) in failing LV. To test for a causal link, we measured frequency-dependent I(Ca) facilitation. In HF myocytes, this CaMKII-dependent process could not be induced, suggesting already maximal activation. Internal application of active CaMKII in failing myocytes did not elicit changes in I(Ca). Finally, CaMKII inhibition by internal diffusion of a specific peptide inhibitor reduced I(Ca) density and inactivation time course to similar levels in control and HF myocytes. I(Ca) density manifests a significant transmural gradient, and this gradient is preserved in heart failure. Activation of CaMKII, a known pro-arrhythmic molecule, is a major contributor to I(Ca) remodeling in load-induced heart failure.  相似文献   

2.
Ca2+-ATPase of human erythrocyte membranes, after being washed to remove Ca2+ after incubation with the ion, was found to be activated. Stimulation of the ATPase was related neither to fluidity change nor to cytoskeletal degradation of the membranes mediated by Ca2+. Activation of the transport enzyme was also unaffected by detergent treatment of the membrane, but was suppressed when leupeptin was included during incubation of the membranes with Ca2+. Stimulation of the ATPase by a membrane-associated Ca2+-dependent proteinase was thus suggested. Much less 138 kDa Ca2+-ATPase protein could be harvested from a Triton extract of membranes incubated with Ca2+ than without Ca2+. Activity of the activated enzyme could not be further elevated by exogenous calpain, even after treatment of the membranes with glycodeoxycholate. There was also an overlap in the effect of calmodulin and the Ca2+-mediated stimulation of membrane Ca2+-ATPase. While Km(ATP) of the stimulated ATPase remained unchanged, a significant drop in the free-Ca2+ concentration for half-maximal activation of the enzyme was observed.  相似文献   

3.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca2+ mobilizing nucleotide essentially involved in T cell activation. Using combined microinjection and single cell calcium imaging, we demonstrate that co-injection of NAADP and the D-myo-inositol 1,4,5-trisphosphate antagonist heparin did not inhibit Ca2+ mobilization. In contrast, co-injection of the ryanodine receptor antagonist ruthenium red efficiently blocked NAADP induced Ca2+ signalling. This pharmacological approach was confirmed using T cell clones stably transfected with plasmids expressing antisense mRNA targeted specifically against ryanodine receptors. NAADP induced Ca2+ signaling was strongly reduced in these clones. In addition, inhibition of Ca2+ entry by SK&F 96365 resulted in a dramatically decreased Ca2+ signal upon NAADP injection. Gd3+, a known blocker of Ca2+ release activated Ca2+ entry, only partially inhibited NAADP mediated Ca2+ signaling. These data indicate that in T cells (i) ryanodine receptor are the major intracellular Ca2+ release channels involved in NAADP induced Ca2+ signals, and that (ii) such Ca2+ release events are largely amplified by Ca2+ entry.  相似文献   

4.
Doxorubicin treatment causes delayed development of cardiotoxicity. Whether the doxorubicin-induced impairment of cardiac functions reverses or progresses with time after the cessation of the treatment was examined. The rats were injected with doxorubicin (2.5 mg/kg, i.v., once a week for 3 weeks) and sacrificed at 1 (1W), 13 (13W), or 18 (18W) weeks after the final doxorubicin administration. The time to peak of twitch contraction observed at 2-Hz stimulation was not altered in left atrial or ventricular muscle preparations isolated from 1W rats, but it was prolonged in those from 13W and 18W rats. The reduction of the magnitude of postrest contraction and the alteration of force-frequency relationships in left atrial muscle preparations in 1W rats were not significant, but were intensified in the 13W and 18W groups. Alterations in the postrest contraction and the force-frequency relationships in ventricular muscle preparations isolated from doxorubicin-treated rat hearts were weaker, but the pattern of alteration was similar to that observed in left atrial muscle preparations. Caffeine-induced contraction observed in skinned fibers that were isolated from the 1W rats was not altered, but it was reduced in the 18W rats. The Ca2+ sensitivity of contractile proteins was not altered in doxorubicin-treated rat hearts in any of the groups. The K(d) values estimated from a [3H]ryanodine binding study were not altered, but the B(max) values were significantly lower in the 13W and 18W groups than those observed in control rats. These results suggest that the dysfunction of the sarcoplasmic reticulum progresses after the completion of doxorubicin treatment and contributes to the doxorubicin-induced late cardiotoxicity.  相似文献   

5.
6.
In heart failure (HF), arrhythmogenic Ca(2+) release and chronic Ca(2+) depletion of the sarcoplasmic reticulum (SR) arise due to altered function of the ryanodine receptor (RyR) SR Ca(2+)-release channel. Dantrolene, a therapeutic agent used to treat malignant hyperthermia associated with mutations of the skeletal muscle type 1 RyR (RyR1), has recently been suggested to have effects on the cardiac type 2 RyR (RyR2). In this investigation, we tested the hypothesis that dantrolene exerts antiarrhythmic and inotropic effects on HF ventricular myocytes by examining multiple aspects of intracellular Ca(2+) handling. In normal rabbit myocytes, dantrolene (1 μM) had no effect on SR Ca(2+) load, postrest decay of SR Ca(2+) content, the threshold for spontaneous Ca(2+) wave initiation (i.e., the SR Ca(2+) content at which spontaneous waves initiate) and Ca(2+) spark frequency. In cardiomyocytes from failing rabbit hearts, SR Ca(2+) load and the wave initiation threshold were decreased compared with normal myocytes, Ca(2+) spark frequency was increased, and the postrest decay was potentiated. Using a novel approach of measuring cytosolic and intra-SR Ca(2+) concentration (using the low-affinity Ca(2+) indicator fluo-5N entrapped within the SR), we showed that treatment of HF cardiomyocytes with dantrolene rescued postrest decay and increased the wave initiation threshold. Additionally, dantrolene decreased Ca(2+) spark frequency while increasing the SR Ca(2+) content in HF myocytes. These data suggest that dantrolene exerts antiarrhythmic effects and preserves inotropy in HF cardiomyocytes by decreasing the incidence of diastolic Ca(2+) sparks, increasing the intra-SR Ca(2+) threshold at which spontaneous Ca(2+) waves occur, and decreasing the loss of Ca(2+) from the SR. Furthermore, the observation that dantrolene reduces arrhythmogenicity while at the same time preserves inotropy suggests that dantrolene is a potentially useful drug in the treatment of arrhythmia associated with HF.  相似文献   

7.
Cardiac tissue in the pulmonary vein sleeves plays an important role in clinical atrial fibrillation. Mechanisms leading to pulmonary vein activity in atrial fibrillation remain unclear. Indirect experimental evidence points to pulmonary vein Ca(2+) handling as a potential culprit, but there are no direct studies of pulmonary vein cardiomyocyte Ca(2+) handling in the literature. We used the Ca(2+)-sensitive dye indo-1 AM to study Ca(2+) handling in isolated canine pulmonary vein and left atrial myocytes. Results were obtained at 35 degrees C and room temperature in cells from control dogs and in cardiomyocytes from dogs subjected to 7-day rapid atrial pacing. We found that basic Ca(2+)-transient properties (amplitude: 186 +/- 28 vs. 216 +/- 25 nM; stimulus to half-decay time: 192 +/- 9 vs. 192 +/- 9 ms; atria vs. pulmonary vein, respectively, at 1 Hz), beat-to-beat regularity, propensity to alternans, beta-adrenergic response (amplitude increase at 0.4 Hz: 96 +/- 52 vs. 129 +/- 61%), number of spontaneous Ca(2+)-transient events after Ca(2+) loading (in normal Tyrode: 0.9 +/- 0.2 vs. 1.3 +/- 0.2; with 1 microM isoproterenol: 7.6 +/- 0.3 vs. 5.1 +/- 1.8 events/min), and caffeine-induced Ca(2+)-transient amplitudes were not significantly different between atrial and pulmonary vein cardiomyocytes. In an arrhythmia-promoting model (dogs subjected to 7-day atrial tachypacing), Ca(2+)-transient amplitude and kinetics were the same in cells from both pulmonary veins and atrium. In conclusion, the similar Ca(2+)-handling properties of canine pulmonary vein and left atrial cardiomyocytes that we observed do not support the hypothesis that intrinsic Ca(2+)-handling differences account for the role of pulmonary veins in atrial fibrillation.  相似文献   

8.
Studies on the status of multifunctional Ca(2+)-calmodulin (CaM)-dependent protein kinase-II (CaMKII) in failing hearts are limited and controversial. The study was performed in the left ventricular (LV) myocardium of six dogs with heart failure (HF) (LV ejection fraction, 23 +/- 2%) and six normal (NL) dogs. In the LV homogenate, CaMKII activity and its protein level were determined by using the CaMKII peptide and antibody, respectively. Furthermore, the protein level of CaM and phosphorylated phospholamban (PLB) at threonine-17 (PLB-Thr(17)) and serine-16 (PLB-Ser(16)) were also determined in the LV homogenate using a specific antibody. In addition, the level of zinc, which inhibits protein kinase A activity, was determined in the LV tissue by inductively coupled plasma mass spectrometry. CaMKII activity and phosphorylated PLB-Thr(17) and PLB-Ser(16) levels, but not CaM and Zn levels, were significantly reduced in the LV homogenate of dogs with HF compared with NL dogs. These results suggest that CaMKII activity is reduced in the failing LV myocardium, and this abnormality is associated with reduced protein expression level of the enzyme but not due to changes in CaM and zinc levels. In conclusion, reduced CaMKII activity and phosphorylated PLB level may be partly responsible for impaired sarcoplasmic reticulum function in HF.  相似文献   

9.
Release of cytochrome c from mitochondria is a key initiative step in the apoptotic process, although the mechanisms regulating this event remain elusive. In the present study, using isolated liver mitochondria, we demonstrate that cytochrome c release occurs via distinct mechanisms that are either Ca(2+)-dependent or Ca(2+)-independent. An increase in mitochondrial matrix Ca(2+) promotes the opening of the permeability transition (PT) pore and the release of cytochrome c, an effect that is significantly enhanced when these organelles are incubated in a reaction buffer that is based on a physiologically relevant concentration of K(+) (150 mm KCl) versus a buffer composed of mannitol/sucrose/Hepes. Moreover, low concentrations of Ca(2+) are sufficient to induce mitochondrial cytochrome c release without measurable manifestations of PT, though inhibitors of PT effectively prevent this release, indicating that the critical threshold for PT varies among mitochondria within a single population of these organelles. In contrast, Ca(2+)-independent cytochrome c release is induced by oligomeric Bax protein and occurs without mitochondrial swelling or the release of matrix proteins, although our data also indicate that Bax enhances permeability transition-induced cytochrome c release. Taken together, our results suggest that the intramitochondrial Ca(2+) concentration, as well as the reaction buffer composition, are key factors in determining the mode and amount of cytochrome c release. Finally, oligomeric Bax appears to be capable of stimulating cytochrome c release via both Ca(2+)-dependent and Ca(2+)-independent mechanisms.  相似文献   

10.
Thapsigargin (Tg) effects on Ca2+ handling in the intact human platelet were studied using Quin2 and chlorotetracycline to measure free cytoplasmic and dense tubular (DT) Ca2+ concentrations ([Ca2+]cyt and [Ca2+]dt, respectively). Tg inhibits Ca2+ uptake by the DT Ca(2+)-ATPase pumps, but incompletely, lowering the Vm to 32% of control (IC50,Tg = 0.18 +/- 0.10 microM). The kinetics of loss of DT Ca2+, transient increases in [Ca2+]cyt, and lowered steady-state [Ca2+]dt after Tg addition are all explained by pump inhibition, with no effect on the rate constant of Ca2+ leakage across the DT membrane (kleak,DT = 1.14 min-1). Tg lowers by 30% the Vm of the Ca2+ extrusion pump located in the plasma membrane (PM), as shown by a Quin2-based method measuring active Ca2+ extrusion (Johansson, J. S., and Haynes, D. H. (1988) J. Membr. Biol. 104, 147-163). This effect (IC50,Tg = 0.45 +/- 0.06 microM), together with a 24 +/- 16% increase in kleak,PM,Ca (to 3 x 10(-4) min-1), accounts for a Tg-dependent sustained elevation [Ca2+]cyt (to 708 +/- 78 nM) which is independent of DT Ca2+ status or history. Thrombin and Tg release 30 and 70% (respectively) of the DT Ca2+ available at any instant, independent of order of challenge, consistent with a single class of DT with respect to these agents.  相似文献   

11.
Membrane proteins and membrane lipids are frequently organized in submicron-sized domains within cellular membranes. Factors thought to be responsible for domain formation include lipid-lipid interactions, lipid-protein interactions and protein-protein interactions. However, it is unclear whether the domain structure is regulated by other factors such as divalent cations. Here, we have examined in native plasma membranes and intact cells the role of the second messenger Ca(2+) in membrane protein organization. We find that Ca(2+) at low micromolar concentrations directly redistributes a structurally diverse array of membrane proteins via electrostatic effects. Redistribution results in a more clustered pattern, can be rapid and triggered by Ca(2+) influx through voltage-gated calcium channels and is reversible. In summary, the data demonstrate that the second messenger Ca(2+) strongly influences the organization of membrane proteins, thus adding a novel and unexpected factor that may control the domain structure of biological membranes.  相似文献   

12.
This study was designed to test the hypothesis that blockade of the renin-angiotensin system improves cardiac function in congestive heart failure by preventing changes in gene expression of sarcoplasmic reticulum (SR) proteins. We employed rats with myocardial infarction (MI) to examine effects of an angiotensin-converting enzyme inhibitor, imidapril, on SR Ca(2+) transport, protein content, and gene expression. Imidapril (1 mg.kg(-1).day(-1)) was given for 4 wk starting 3 wk after coronary artery occlusion. Infarcted rats exhibited a fourfold increase in left ventricular end-diastolic pressure, whereas rates of pressure development and decay were decreased by 60 and 55%, respectively. SR Ca(2+) uptake and Ca(2+) pump ATPase, as well as Ca(2+) release and ryanodine receptor binding activities, were depressed in the failing hearts; protein content and mRNA levels for Ca(2+) pump ATPase, phospholamban, and ryanodine receptor were also decreased by approximately 55-65%. Imidapril treatment of infarcted animals improved cardiac performance and attenuated alterations in SR Ca(2+) pump and Ca(2+) release activities. Changes in protein content and mRNA levels for SR Ca(2+) pump ATPase, phospholamban, and ryanodine receptor were also prevented by imidapril treatment. Beneficial effects of imidapril on cardiac function and SR Ca(2+) transport were not only seen at different intervals of MI but were also simulated by another angiotensin-converting enzyme inhibitor, enalapril, and an ANG II receptor antagonist, losartan. These results suggest that blockade of the renin-angiotensin system may increase the abundance of mRNA for SR proteins and, thus, may prevent the depression in SR Ca(2+) transport and improve cardiac function in congestive heart failure due to MI.  相似文献   

13.
Pancreatic islets of Langerhans display complex intracellular calcium changes in response to glucose that include fast (seconds), slow ( approximately 5 min), and mixed fast/slow oscillations; the slow and mixed oscillations are likely responsible for the pulses of plasma insulin observed in vivo. To better understand the mechanisms underlying these diverse patterns, we systematically analyzed the effects of glucose on period, amplitude, and plateau fraction (the fraction of time spent in the active phase) of the various regimes of calcium oscillations. We found that in both fast and slow islets, increasing glucose had limited effects on amplitude and period, but increased plateau fraction. In some islets, however, glucose caused a major shift in the amplitude and period of oscillations, which we attribute to a conversion between ionic and glycolytic modes (i.e., regime change). Raising glucose increased the plateau fraction equally in fast, slow, and regime-changing islets. A mathematical model of the pancreatic islet consisting of an ionic subsystem interacting with a slower metabolic oscillatory subsystem can account for these complex islet calcium oscillations by modifying the relative contributions of oscillatory metabolism and oscillatory ionic mechanisms to electrical activity, with coupling occurring via K(ATP) channels.  相似文献   

14.
Summary This communication reports the kinetics of the Na+/ Ca2+ exchanger and of the plasma membrane (PM) Ca2+ pump of the intact human platelet. The kinetic properties of these two systems were deduced by studying the rate of Ca2+ extrusion and its Na+ dependence for concentrations of cytoplasmic free Ca2+ ([Ca2+]cyt) in the 1–10-m range. The PM Ca2+ATPase was previously characterized (Johansson, J.S. Haynes, D.H. 1988. J. Membrane Biol. 104:147–163) for [Ca2+]cyt] 1.5 m with the fluorescent Ca2+ indicator quin2 (K d= 115 nm). That study determined that the PM Ca2+ pump in the basal state has a V max = 0.098 mm/min, a K m= 80 nm and a Hill coefficient = 1.7. The present study extends the measurable range of [Ca2+]cyt with the intracellular Ca2+ probe, rhod2 (K d= 500 nm), which has almost a fivefold lower affinity for Ca2+. An Appendix also describes the Mg2+ and pH dependence of the K dand fluorescence characteristics of the commercially available dye, which is a mixture of two molecules. Rates of active Ca2+ extrusion were determined by two independent methods which gave good agreement: (i) by measuring Ca2+ extrusion into a Ca2+-free medium (above citation) or (ii) by the newly developed ionomycin short-circuit method, which determines the ionomycin concentration necessary to short circuit the PM Ca2+ extrusion systems. Absolute rates of extrusion were determined by knowledge of how many Ca2+ ions are moved by ionomycin per minute. The major findings are as follows: (i) The exchanger is saturable with respect to Ca2+ with a K m= 0.97 ± 0.31 m and Vmax = 1.0 ± 0.6 mm/ min. (ii) At high [Ca2+]cyt, the exchanger works at a rate 10 times as large as the basal V max of the PM Ca2+ extrusion pump. (iii) The exchanger can work in reverse after Na+ loading of the cytoplasm by monensin. (iv) The PM Ca2+ extrusion pump is activated by exposure to [Ca2+]cyt 1.5 m for 20–50 sec. Activation raises the pump V max to 1.6 ± 0.6 mm/min and the K mto 0.55 ± 0.24 m. (v) The Ca2+ buffering capacity of the cytoplasm is 3.6 mm in the 0.1 to 3 m range of [Ca2+]cyt. In summary, the results show that the human platelet can extrude Ca2+ very rapidly at high [Ca2+]cyt. Both the Na+/Ca2+ exchanger and Ca2+ pump activation may prevent inappropriate platelet activation by marginal stimuli.Abbreviations cAMP cyclic adenosine 3,5-monophosphate - cGMP cyclic guanosine 3,5,-monophosphate - Ca-CAM calcium calmodulin; - DT dense tubules - B intrinsic cytoplasmic Ca2+ binding sites - R rhod2 or 5-(3,6-bis(dimethylamino)xanth-9-yl)-1-(2-amino-4-hy droxy lphenoxy)-2-(2-amino-5-methylphen- oxy)ethane-N,N,NN-tetraacetic acid - [Ca2+]cyt cytoplasmic Ca2+ activity - quin2 2-[[2-bis[(carboxymethyl)amino]-5-methyl-phenoxy]methyl]-6-methoxy-8-[bis(carboxymethyl)amino]quinoline - V or Vextrusion true rate of Ca2+ extrusion - fura-2 1-[2-(5-carboxyoxazol-2-yl)-6-aminobenzofuran-5-oxy]-2-(2-amino-5-methylphenoxy)-ethane-N,N,NN-tetraacetic acid - AM acetoxymethyl ester - DMSO dimethylsulfoxide - CTC chlortetracycline - EGTA ethyleneglycol-bis(-aminoethyl ether) N,N,N,N- tetraacetic acid - HEPES 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid - NMDG N-methyl-d-glucamine - PIPES 1,4-piperazine-bis-(ethanesulfonic acid) - HPLC high performance liquid chromatography - I fraction of high-affinity rhod2 complexed with Ca2+ - F the observed fluorescence - Fmin the minimal fluorescence observed in the absence of Ca2+ - Fmax the maximal fluorescence observed when the dye is saturated with Ca2+ - X1 the fraction of high-affinity dye - K d,1 dissociation constant of high-affinity dye - K d,2 dissociation constant of the low-affinity dye - -d1/dt rate of Ca2+ removal from the rhod2-Ca complex; - -dF/dt the slope representing the absolute rate of fluorescence decrease in a progress curve - Fmax (Fmax — Fmin)cyt difference between maximal and minimal fluorescence for cytoplasmic high affinity form of rhod2 - F50 fluorescence of the high-affinity form ofrhod2for[Ca2+]cyt=50 nM - [Ca2+]0 external Ca2+concentration - K p proportionality constant between the total number of Ca2+ ions moved and the change in high-affinity rhod2 complexation to Ca2 - (d[Ca2+]cyt, T)/dt rate of Ca2+ influx obtained with maximal levels of ionomycin - kleak rate constant for passive inward Ca2+ leakage - kinno rate constant for ionomycin-mediated Ca2+ influx - T total - [rhod2]cyt,T total intracellular rhod2 concentration - [quin2]cyt,T total intracellular quin2 concentration - [B]T total cytoplasmic buffering capacity - A[Ca2+]cyt,T total number of Ca2+ ions moved into the cytoplasm - [rhod2-Ca]cyt, T change in concentration of total intracellular high-affinity rhod2 complexed to Ca2+ - [B-Ca]T change in concentration of total cytoplasmic binding sites complexed to Ca2+ - [quin2]cyt, T change in concentration of total intracellular quinl complexed to Ca2+ - change in the degree of intracellular quin2 saturation - 1 change in degree of saturation of cytoplasmic high-affinity rhod2 - 1-/t rate of change in degree of saturation of cytoplasmic high affinityrhod2 - Vobs observed rate of Ca2+ removal from the rhod2-Ca complex - V8.3 m the rate of Ca2+ removal from the high affinity rhod2-Ca complex at [Ca2+]cyt = 8.3 m - /t rate of change in of the degree of quin2 saturation - [Ca2+]cytT/t initial linear rate of ionomycin-mediated Ca2+ influx - EC50 effective concentration giving a half-maximal effect - [Na+]cyt cytoplasmic Na+ activity - CAM calmodulin - ACN acetonitrile - TFA trifuloroacetic acid  相似文献   

15.
The Ca2+/Mg2+ ATPase of rat heart plasma membrane was activated by millimolar concentrations of Ca2+ or Mg2+; other divalent cations also activated the enzyme but to a lesser extent. Sodium azide at high concentrations inhibited the enzyme by about 20%; oligomycin at high concentrations also inhibited the enzyme slightly. Trifluoperazine at high concentrations was found inhibitory whereas trypsin treatment had no significant influence on the enzyme. The rate of ATP hydrolysis by the Ca2+/Mg2+ ATPase decayed exponentially; the first-order rate constants were 0.14-0.18 min-1 for Ca2+ ATPase activity and 0.15-0.30 min-1 for Mg2+ ATPase at 37 degrees C. The inactivation of the enzyme depended upon the presence of ATP or other high energy nucleotides but was not due to the accumulation of products of ATP hydrolysis. Furthermore, the inactivation of the enzyme was independent of temperature below 37 degrees C. Con A when added into the incubation medium before ATP blocked the ATP-dependent inactivation; this effect was prevented by alpha-methylmannoside. In the presence of low concentrations of detergent, the rate of ATP hydrolysis was reduced while the ATP-dependent inactivation was accelerated markedly. Both Con A and glutaraldehyde decreased the susceptibility of Ca2+/Mg2+ ATPase to the detergent. These results suggest that the Ca2+/Mg2+ ATPase is an intrinsic membrane protein which may be regulated by ATP.  相似文献   

16.
The activities of both sarcolemmal (SL) Na(+)-K(+)-ATPase and Na(+)/Ca(2+) exchanger, which maintain the intracellular cation homeostasis, have been shown to be depressed in heart failure due to myocardial infarction (MI). Because the renin-angiotensin system (RAS) is activated in heart failure, this study tested the hypothesis that attenuation of cardiac SL changes in congestive heart failure (CHF) by angiotensin-converting enzyme (ACE) inhibitors is associated with prevention of alterations in gene expression for SL Na(+)-K(+)-ATPase and Na(+)/Ca(2+) exchanger. CHF in rats due to MI was induced by occluding the coronary artery, and 3 wk later the animals were treated with an ACE inhibitor, imidapril (1 mg.kg(-1).day(-1)), for 4 wk. Heart dysfunction and cardiac hypertrophy in the infarcted animals were associated with depressed SL Na(+)-K(+)-ATPase and Na(+)/Ca(2+) exchange activities. Protein content and mRNA levels for Na(+)/Ca(2+) exchanger as well as Na(+)-K(+)-ATPase alpha(1)-, alpha(2)- and beta(1)-isoforms were depressed, whereas those for alpha(3)-isoform were increased in the failing heart. These changes in SL activities, protein content, and gene expression were attenuated by treating the infarcted animals with imidapril. The beneficial effects of imidapril treatment on heart function and cardiac hypertrophy as well as SL Na(+)-K(+)-ATPase and Na(+)/Ca(2+) exchange activities in the infarcted animals were simulated by enalapril, an ACE inhibitor, and losartan, an angiotensin receptor antagonist. These results suggest that blockade of RAS in CHF improves SL Na(+)-K(+)-ATPase and Na(+)/Ca(2+) exchange activities in the failing heart by preventing changes in gene expression for SL proteins.  相似文献   

17.
Recently, we reported indirect evidence that plasma membrane Ca2+-ATPase (PMCA) can mediate B-type Ca2+ channels of cardiac myocytes. In the present study, in order to bring more direct evidence, purified PMCA from human red blood cells (RBC) was reconstituted into giant azolectin liposomes amenable to the patch-clamp technique. Purified RBC PMCA was used because it is available pure in larger quantity than cardiac PMCA. The presence of B-type Ca2+ channels was first investigated in native membranes of human RBC. They were detected and share the characteristics of cardiac myocytes. They spontaneously appeared in scarce short bursts of activity, they were activated by chlorpromazine (CPZ) with an EC50 of 149 mmole/l or 1 mmole/l vanadate, and then switched off by 10 mmole/l eosin or dose-dependently blocked by 1-5 mmole/l ATP. Independent of membrane potential, the channel gating exhibited complex patterns of many conductance levels, with three most often observed conductance levels of 22, 47 and 80 pS. The activation by vanadate suggests that these channels could play a role in the influx of extracellular Ca2+ involved in the vanadate-induced Gardos effect. In PMCA-reconstituted proteoliposomes, nearly half of the ATPase activity was retained and clear "channel-like" openings of Ba2+- or Ca2+-conducting channels were detected. Channel activity could be spontaneously present, lasting the patch lifetime or, when previously quiescent, activity could be induced by application of 50 mmole/l CPZ only in presence of 25 U/ml calmodulin (CaM), or by application of 1 mmole/l vanadate alone. Eosin (10 mmole/l) and ATP (5 mmole/l) significantly reduced spontaneous activity. Channel gating characteristics were similar to those of RBC, with main conductance levels of 21, 40 and 72 pS. The lack of direct activation by CPZ alone might be attributed to a purification-induced modification or absence of unidentified regulatory component(s) of PMCA. Despite a few differences in results between RBC and reincorporated PMCA, most probably attributable to the decrease in ATPase activity following the procedure of reincorporation, the present experimental conditions appear to reveal a channel-mode of the PMCA that shares many similarities with the B-type Ca2+ channel.  相似文献   

18.
Two tests were performed to assess the relationship between the Ca2+-activated K+ channel and the Ca2+-pumping ATPase in human erythrocytes. Antibodies against the purified ATPase inhibited the ATPase in resealed erythrocytes, but had no effect on the K+ channel (as assessed by Rb+ efflux). Reconstituted liposomes containing the purified active Ca2+-pumping ATPase showed no Ca2+-activated Rb+ influx. Both of these results suggest that some molecule other than the Ca2+-ATPase is responsible for the K+ channel.  相似文献   

19.
The mechanisms of sinoatrial node (SAN) dysfunction in heart failure (HF) remain unclear. We hypothesized that impaired rhythmic spontaneous sarcoplasmic reticulum Ca(2+) release (Ca(2+) clock) plays an important role in SAN dysfunction in HF. HF was induced in canine hearts by rapid ventricular pacing. The location of pacemaking sites was determined in vivo using computerized electrical mapping in acute open-chest preparations (normal, n = 3; and HF, n = 4). Isoproterenol (Iso, 0.2 μg·kg(-1)·min(-1)) infusion increased heart rate and shifted the pacemaking site to the superior SAN in all normal hearts. However, in failing hearts, Iso did not induce superior shift of the pacemaking site despite heart rate acceleration. Simultaneous optical recording of intracellular Ca(2+) and membrane potential was performed in Langendorff-perfused isolated right atrium (RA) preparations from normal (n = 7) and failing hearts (n = 6). Iso increased sinus rate, enhanced late diastolic Ca(2+) elevation (LDCAE), and shifted the pacemaking sites to the superior SAN in all normal but in none of the HF RAs. Caffeine (2 ml, 20 mmol/l) caused LDCAE and increased heart rate in four normal RAs but in none of the three HF RAs. Iso induced ectopic beats from lower crista terminalis in five of six HF RAs. These ectopic beats were suppressed by ZD-7288, a specific pacemaker current (I(f)) blocker. We conclude that HF results in the suppression of Ca(2+) clock, resulting in the unresponsiveness of superior SAN to Iso and caffeine. HF also increases the ectopic pacemaking activity by activating the I(f) at the latent pacemaking sites in lower crista terminalis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号