首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
1,3-Dichloropropene (1,3-D) at rates of 17.2 to 51.6 liters/ha applied 3 days preplant or at planting significantly (P < 0.05) reduced the amount of galling on roots of soybean grown in sites infested with Meloidogyne incognita or M. arenaria. Populations of M. incognita second-stage juveniles at harvest were significantly (P < 0.05) reduced by all treatments. Only the 51.6-liters/ ha treatments and a 3-day preplant 34.4-liters/ha application significantly reduced at-harvest juvenile infestations of M. arenaria. Equations (P < 0.001) relating soybean yield and 1,3-D dosage indicated soybean phytotoxicity at the upper range of the nematicide rates. The maximum yield response was predicted at 40 liters/ha applied 3 days preplant at both infestation sites. Maximum yield response was predicted with 30 liters/ha applied at planting to M. incognita-infested soil and from 25 liters/ha applied at planting to M. arenaria-infested soil. Application of economic factors suggested that management of M. incognita may be cost effective with at-plant treatments of low rates of 1,3-D. Yield responses of M. arenaria-infected soybean exposed to similar treatments were insufficient to justify their use at prevailing prices.  相似文献   

2.
A wild type strain ofVerticillium lecanii and a mutant strain with increased tolerance to the fungicide benomyl were evaluated in greenhouse experiments for effects on Heterodera glycines populations. Nematodes were applied at 300 eggs and juveniles per 4,550-cm³ pot (two soybean plants in 4,990 g loamy sand per pot) and at both 300 and 10,000 eggs and juveniles per 1,720-cm³ pot (one soybean plant in 2,060 g sand per pot). With 300 nematodes added per pot, both V. lecanii strains significantly reduced nematode populations in loamy sand (fungus applied at 0.02% dry weight per dry weight loamy sand) and sand (0.006% and 0.06% fungus application rates). The mutant strain applied at 0.002% to sand also significantly reduced cyst numbers. When 10,000 nematodes were added per pot, only the mutant strain at 0.06% significantly decreased population. Various media were tested for isolation of the fungus strains from prills, loamy sand, and sand, but the fungi were recovered from few of the greenhouse pots.  相似文献   

3.
Wheat cultivars Anza and Produra grown in winter in California were planted in Meloidogyne incognita infested and noninfested sandy loam plots in October (soil temperature 21 C) and November (soil temperature 16 C) of 1979. Meloidogyne incognita penetrated roots of mid-October planted Ataza (427 juveniles/g root), developed into adult females by January, and produced 75 eggs/g root by harvest in April. Penetration and development did not occur in late plantings. Anza seedlings grown in infested soil in pots buried in field soil in early spring were not invaded until soil temperature exceeded 18 C. Meloidogyne incognita juveniles can migrate through soil and penetrate roots at temperatures above 18 C (activity threshold), however development can occur at lower temperatures. Grain yields were not significantly different between nematode infested (3,390 kg/ha) and noninfested (2,988 kg/ha) plots. Winter decline of eggs and juveniles in two late plantings anti in fallow soil were 69, 72, and 77%, respectively, but egg and juvenile decline was only 40% in the early Anza plots that supported nematode reproduction in the spring. Delay of planting date until soil temperature is below 18 C is suggested to maximize the use of wheat in rotation as a nematode pest management cultural tactic for suppressing root-knot nematodes.  相似文献   

4.
Damage functions and reproductive curves were determined for Hoplolaimus columbus on cotton cv. Deltapine 90 and soybean cv. Gordon over 2 years in field plots in Georgia. Maximum potential yield suppressions of 18% on cotton and 48% on soybean were predicted with respect to increasing Pi. Similar functions indicated yield suppressions of 38% on cotton and 30% on soybean with respect to increasing midseason nematode densities (Pm). Maximum Pf predicted by reproductive curves were 123 and 474/100 cm³ soil on cotton and soybean, respectively. Thresholds at which 10% yield suppression would occur were lower on soybean (Pi of 4) than on cotton (Pi of 70/100 cm³ soil). The economic threshold for a control measure costing $72/ha was a Pi of 60/100 cm³ soil on cotton, assuming a price for cotton lint of $1.44/kg ($0.60/lb), whereas a similar treatment would not be economically feasible on soybean at any Pi with an assumed price of $0.04/kg ($5.50/bu) soybean seed. Damage functions and reproductive curves as determined in this study offer potentially useful tools for analyzing cropping systems and providing decision tools for nematode management.  相似文献   

5.
Nematode population densities and yield of sweet corn and sweet potato as affected by the nematicide fenamiphos, in a sweet corn-sweet potato-vetch cropping system, were determined in a 5-year test (1981-85). Sweet potato was the best host of Meloidogyne incognita of these three crops. Fenamiphos 15G (6.7 kg a.i./ha) incorporated broadcast in the top 15 cm of the soil layer before planting of each crop increased (P ≤ 0.05) yields of sweet corn in 1981 and 1982 and sweet potato number 1 grade in 1982 and 1983. Yield of sweet corn and numbers of M. incognita second-stage juveniles (J2) in the soil each month were negatively correlated from planting (r = - 0.47) to harvest (r = -0.61) in 1982. Yield of number 1 sweet potato was inversely related to numbers of J2 in the soil in July-October 1982 and July-September 1983. Yield of cracked storage roots was positively related to the numbers of J2 in the soil on one or more sampling dates in all years except 1985. Some factor(s), such as microbial degradation, resistant M. incognita development, or environment, reduced the effect of fenamiphos.  相似文献   

6.
The relationship between population densities of race 1 of Meloidogyne incognita and yield of eggplant was studied. Microplots were infested with finely chopped nematode-infected pepper roots to give population densities of 0, 0.062, 0.125, 0.25, 0.50, 1, 2, 4, 8, 16, 32, 64, and 128 eggs and juveniles/cm³ soil. Both plant growth and yield were suppressed by the nematode. A tolerance limit of 0.054 eggs and juveniles/cm³ soil and a minimum relative yield of 0.05 at four or more eggs and juveniles/cm³ soil were derived by fitting the data with the equation y = m + (1 - m)zP⁻T. Maximum nematode reproduction rate was 12,300. Hatch of eggs from egg masses in water or from sodium hypochlorite dissolved egg masses was similar (41% and 39%), but egg viability was significantly greater from egg masses in water (58%) than from sodium hypochlorite dissolved egg masses (12%) after 4 weeks. Greater numbers of nematodes were collected from roots of tomatoes from soil infested with entire egg masses than from tomato roots from soil infested with egg masses dissolved by sodium hypochlorite.  相似文献   

7.
The effects of Meloidogyne incognita on the Big Jim, Jalapeno, and New Mexico No. 6 chile (Capsicum annuum) cultivars were investigated in microplots for two growing seasons. All three cultivars were susceptible to M. incognita and reacted similarly to different initial populations of this nematode. Severe stunting and yield suppressions occurred at all initial M. incognita densities tested ranging from 385 to 4,230 eggs and larvae/500 cm³ soil. Regression analysis of the microplot data from a sandy loam soil showed yield losses of 31% for the 1978 season and 25% for the 1979 season for the three cultivars for each 10-fold increase in the initial population of M. incognita.  相似文献   

8.
Spatial distributions of several species of plant-parasitic nematodes were determined in each of three fallow vegetable fields and in smaller subunits of those fields. Goodness of fit to each of several theoretical distributions was tested hy means of a X² test. Distributions for most species showed good agreement with a negative binomial model. An exception occurred with Crictmemella sp., which showed a better fit to the Neyman Type A distribution. For nematodes distributed according to the negative binomial model, the number of cores per composite sample needed to achieve specified relative errors was calculated. For a given nematode species, such as Quinisulcius actus (Allen) Siddiqi or Meloidogyne incognita (Kofoid &White) Chitwood, the k values for the negative binomial distribution increased as field size decreased, with the result that fewer cores were needed to achieve the same level of precision in a smaller field. Best results were achieved when the single sample was used to estimate populations in fields of 0.25-0.45 ha in size. When using only a single composite sample to estimate mixed populations of the nematodes studied here in a field of that size, approximately 22 cores per composite sample would be needed to estimate all population means within a standard error to mean ratio of 25%. Considerably, more cores were needed to maintain a given level of precision in fields of 1.0 ha or greater, and it may be necessary to subdivide larger unils (ca. 1.5 ha and up) for accurate sampling.  相似文献   

9.
Models are presented to describe the influence of rotations of Meloidogyne incognita-susceptible cultivars, resistant cultivars, and maize on postharvest abundance of M. incognita juveniles in the soil. Depending on initial densities of juveniles, monocultured regimes reached equilibrium densities after a few years of 287, 40, and 10 juveniles per 10 cm³ soil for susceptible soybean, resistant soybean, and maize, respectively. Yearly changes in the population density of juveniles due to rotation of these crops were simulated by iterative substitution of the model equations for each crop. A maximum density of 319 per 10 cm³ soil was reached following a susceptible cultivar in a susceptible-resistant soybean rotation. Soybean yield loss estimates are presented for monocultured regimes and for various rotations with maize.  相似文献   

10.
Overestimation of yield loss caused by Meloidogyne incognita on tobacco was calculated as a function of the statistical frequency distribution of sample counts. Sampling frequency distributions were described by a negative binomial model, with parameter k, and the resulting probability generating function was used to calculate discrete damage probabilities. Negative binomial damage predictions were compared to mean-density estimates of damage. Predictions based on mean density alone overestimate yield loss by values ranging from 300% at a k of 0.1 to less than 10% at a k of 1.0. Damage overestimation was described as an exponential function of k and mean density. Preplant sampling data for M. incognita were used to derive a linear model for the estimation of k from mean density, allowing the calculation of yield-loss overestimation based on one parameter, the field mean density. Overestimation of damage ranged from 288% at a density of 50 juveniles/500 cm³ soil, to 5% at a density of 1,000 juvelfiles/500 cm³ soil.  相似文献   

11.
The response of two soybean plant introductions, PI 96354 and PI 417444, highly resistant to Meloidogyne incognita, to increasing initial soil population densities (Pi) (0, 31, 125, and 500 eggs/100 cm³ soil) of M. incognita was studied in field microplots for 2 years. The plant introductions were compared to the cultivars Forrest, moderately resistant, and Bossier, susceptible to M. incognita. Averaged across years, the yield suppressions of Bossier, Forrest, PI 417444, and PI 96354 were 97, 12, 18, and < 1%, respectively, at the highest Pi when compared with uninfested control plots. Penetration of roots by second-stage juveniles (J2) increased linearly with increasing Pi at 14 days after planting. At the highest Pi, 62% fewer J2 were present in roots of PI 96354 than in roots of the other resistant genotypes. Soil population densities of M. incognita were lower on both plant introductions than on Forrest. At 75 and 140 days after planting, PI 96354 had the lowest number of J2 in the soil, with 49% and 56% fewer than Forrest at the highest Pi. The resistance genes in PI 96354 should be useful in a breeding program to improve the level of resistance to M. incognita in soybean cultivars.  相似文献   

12.
The relationships between densities of all members of a plant-parasitic nematode community and yield of ''Davis'' soybean and between final and preplant population levels were examined in small plots on sandy soils in north-central Florida. Plant-parasitic nematodes present in the community included Belonolaimus longicaudatus, Criconemella sphaerocephala, Meloidogyne incognita, Paratrichodorus minor, Pratylenchus brachyurus, and Xiphinema sp. Plant growth, including stand count, soybean yield (kg/ha), and size of young plants, was occasionally inversely correlated (P ≤ 0.05) with densities of B. longicaudatus or P. brachyurus, but not with densities of other species or with a range of soil variables. The nature of this relationship varied with season, with more severe stand losses noted during 1987 than in 1988. Final population densities (Pf) of most nematode species showed significant (P ≤ 0.05) linear relationships to densities measured at planting or earlier (Pi). These relationships were stronger (higher r²) with the ectoparasite B. longicaudatus than with the endoparasites M. incognita and P. brachyurus. Criconemella sphaerocephala declined under soybean cultivation, reaching levels near zero after two seasons. A quadratic model showed an improvement (P ≤ 0.05) over the linear model in describing the relationship between Pf and Pi measured at planting for B. longicaudatus, and gave a better indication of the leveling off of Pf at high values of Pi.  相似文献   

13.
Terminated small grain cover crops are valuable in light textured soils to reduce wind and rain erosion and for protection of young cotton seedlings. A three-year study was conducted to determine the impact of terminated small grain winter cover crops, which are hosts for Meloidogyne incognita, on cotton yield, root galling and nematode midseason population density. The small plot test consisted of the cover treatment as the main plots (winter fallow, oats, rye and wheat) and rate of aldicarb applied in-furrow at-plant (0, 0.59 and 0.84 kg a.i./ha) as subplots in a split-plot design with eight replications, arranged in a randomized complete block design. Roots of 10 cotton plants per plot were examined at approximately 35 days after planting. Root galling was affected by aldicarb rate (9.1, 3.8 and 3.4 galls/root system for 0, 0.59 and 0.84 kg aldicarb/ha), but not by cover crop. Soil samples were collected in mid-July and assayed for nematodes. The winter fallow plots had a lower density of M. incognita second-stage juveniles (J2) (transformed to Log10 (J2 + 1)/500 cm3 soil) than any of the cover crops (0.88, 1.58, 1.67 and 1.75 Log10(J2 + 1)/500 cm3 soil for winter fallow, oats, rye and wheat, respectively). There were also fewer M. incognita eggs at midseason in the winter fallow (3,512, 7,953, 8,262 and 11,392 eggs/500 cm3 soil for winter fallow, oats, rye and wheat, respectively). Yield (kg lint per ha) was increased by application of aldicarb (1,544, 1,710 and 1,697 for 0, 0.59 and 0.84 kg aldicarb/ha), but not by any cover crop treatments. These results were consistent over three years. The soil temperature at 15 cm depth, from when soils reached 18°C to termination of the grass cover crop, averaged 9,588, 7,274 and 1,639 centigrade hours (with a minimum threshold of 10°C), in 2005, 2006 and 2007, respectively. Under these conditions, potential reproduction of M. incognita on the cover crop did not result in a yield penalty.  相似文献   

14.
Quantitative techniques were used to analyze and determine optimal potential profitability of 3-year rotations of cotton, Gossypium hirsutum cv. Coker 315, and soybean, Glycine max cv. Centennial, with increasing population densities of Hoplolaimus columbus. Data collected from naturally infested on-farm research plots were combined with economic information to construct a microcomputer spreadsheet analysis of the cropping system. Nonlinear mathematical functions were fitted to field data to represent damage functions and population dynamic curves. Maximum yield losses due to H. columbus were estimated to be 20% on cotton and 42% on soybean. Maximum at-harvest population densities were calculated to be 182/100 cm³ soil for cotton and 149/100 cm³ soil for soybean. Projected net incomes ranged from a $17.74/ha net loss for the soybean-cotton-soybean sequence to a net profit of $46.80/ha for the cotton-soybean-cotton sequence. The relative profitability of various rotations changed as nematode densities increased, indicating economic thresholds for recommending alternative crop sequences. The utility and power of quantitative optimization was demonstrated for comparisons of rotations under different economic assumptions and with other management alternatives.  相似文献   

15.
Use of resistant Phaseolus vulgaris germplasm has a potential role in limiting damaging effects of Meloidogyne spp. on bean production. Effects of two genetic resistance systems in common bean germptasm on penetration and development of Meloidogyne spp. were studied under growth room conditions at 22°C to 25°C. Nemasnap (gene system 1) and G1805 (gene system 2) were inoculated with second-stage juveniles (J2) of M. incognita race 2 and M. arenaria race 1, respectively; Black Valentine was used as the susceptible control. Up to 7 days after inoculation, there were no differences in numbers of M. incognita J2 penetrating roots of Black Valentine and Nemasnap; subsequently, more nematodes were present in Black Valentine roots (P < 0.05). More nematodes reached advanced stages of development in Black Valentine than in Nemasnap roots (P < 0.05). Total numbers of M. arenaria were greater in Black Valentine than in G 1805 roots from 14 days after inoculation (P < 0.05). Advanced stages of development occurred earlier and in greater numbers in Black Valentine plants than in G1805 plants. In these studies, resistance to M. incognita race 2 and M. arenaria race 1 in bean germplasm, which contain gene system 1 and gene system 2, respectively, was expressed by delayed nematode development rather than by differential penetration compared with susceptible plants.  相似文献   

16.
Tomato seedlings in a growth chamber were inoculated with 150 Meloidogyne incognita eggs and 25 infective juveniles (IJ)/cm² of Steinernema feltiae, S. riobrave, or Heterorhabditis bacteriophora. With the exception of seedling roots treated with H. bacteriophora, all seedlings treated with entomopathogenic nematodes had fewer M. incognita juveniles inside roots and produced fewer eggs than the control seedlings. Tomato plants in the greenhouse were infested with 4,000 M. incognita eggs and treated 2 weeks before, 1 week before, at the same time, 1 week after, or 2 weeks after with 25 or 125 IJ/cm² of S. feltiae, S. riobrave, or H. bacteriophora. Plants with pre- and post-infestation applications of S. feltiae or S. riobrave suppressed M. incognita. Plants treated with H. bacteriophora 1 week before and at the time of infestation suppressed M. incognita. Increasing the rate of H. bacteriophora and S. feltiae from 25 to 125 IJ/cm² improved M. incognita suppression.  相似文献   

17.
The level of resistance to root-knot nematode, Meloidogyne incognita, in NemX, a new cultivar of the Acala-type upland cotton, was evaluated in relation to four resistant breeding lines (N6072, N8577, N901, and N903) and four susceptible cultivars (Maxxa, SJ2, Royale, and Prema). In growth pouch tests, an average of only 4 nematode egg masses was produced on roots of NemX or the resistant lines, compared to a significantly higher average of 21 on the susceptible cultivars. In pot tests, the nematode reproduction factor (RF = Pf/Pi) in NemX and the resistant lines averaged 0.7, compared to a significantly higher average of 10 on the susceptible cultivars. Root galling in NemX or other resistant cotton averaged 15%, compared to 74% on the susceptible cultivars, in either pot or field tests. In plots with low levels of nematode infestation (Pi ≤ 150 second-stage juveniles [J2]/500 g soil), lint yield of NemX averaged 1,370 kg/ha and was less than the yield of susceptible Maxxa (1,450 k g /h a ). However, in plots with medium or high levels of nematode infestation (Pi = 151-300 or >300 J2/500 g soil, respectively), yields of NemX decreased only slightly and averaged 1,300 or 1,050 kg/ha, respectively, whereas yields of Maxxa were severely reduced to 590 or 503 kg/ha, respectively. Fusarium wih symptoms were observed on both NemX and Maxxa, and percent occurrence increased with increasing preplant nematode density. In plots with the highest nematode densities, 22% of NemX and 65% of Maxxa plants were wilted. NemX was highly effective against five M. incognita isolates and moderately effective against a sixth isolate that had been exposed to resistant cotton over several seasons. These results showed that NemX is as resistant to M. incognita as the four breeding lines, and much more resistant than the tested susceptible cultivars of cotton.  相似文献   

18.
Effects of several population densities ofMeloidogyne incognita on the sweet potato cultivars Centennial (susceptible) and Jasper (moderately resistant) were studied. Field plots were infested with initial levels (Pi) of 0, 10, 100, 1,000, 5,000, and 10,000 eggs and juveniles/500 cm³ soil in 1980 and 0, 100, 1,000, 2,000, 3,000, 4,000, and 5,000 in 1981. M. incognita population development trends were similar on both cultivars; however, at high Pi, more eggs and juveniles were recovered from Centennial than from Jasper. The highest Pi did not result in the highest mid-season (Pm) counts. Pi was negatively correlated with the number of marketable roots and root weight but positively correlated with total cracked roots, percentage of cracked roots, and cracking severity. Jasper tolerated higher Pi with greater yields and better root quality than Centennial. Cracking of fleshy roots occurred with both cultivars at low Pi.  相似文献   

19.
Several Meloidogyne incognita geographic populations were characterized by analysis of the restriction fragment length polymorphisms (RFLP) obtained after digestion of their total DNA and hybridization with a [³²P]-labeled probe. The probe consisted of a 1.7-kb-repeated DNA sequence, isolated from a M. incognita genomic library, that hybridized to multiple BamH I fragments in the genome of each isolate. The patterns showed sufficient polymorphism to enable the accurate differentiation of all the populations tested.  相似文献   

20.
One susceptible (D6) and two resistant (E2 and N4) clones of Solanum sparsipilum × (S. phureja × haploid of S. tuberosum) were used to study the responses of potato roots and tubers to race 1 of Meloidogyne incognita (Kofoid &White) Chitwood. The compatible response was characterized by rapid penetration of large numbers of second-stage juveniles (J2) into roots, cessation of root growth, and occasional curving of root tips. The life cycle of M. incognita in the susceptible clone was completed in 25 days at 23-28 C. The incompatible response was characterized by penetration of fewer J2 into roots, necrosis of feeding sites within 2-7 days, and lack of nematode development. There were no differences in response of tubers from resistant and susceptible clones to nematode infection. Small numbers of J2 were detected in tubers, but they did not develop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号