首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increased culturing of a tomato population of Heterodera schachtii (UT1C) on tomato for 480 days (eight inoculation periods of 60 days each) significantly increased virulence to ''Stone Improved'' tomato. A synergistic relationship existed between Meloidogyne hapla and H. schaehtii on tomato. A combination of H. schachtii (UTIC) and M. hapla significantly reduced tomato root weights by 65, 64, and 61% below root weights of untreated controls, and single inoculations of M. hapla and H. schachtii, respectively. This corresponded to root reductions of 42, 44, and 46% from a combination of H. schachtii (UT1B) and M. hapla. Antagonism existed between H. schachtii and M. hapla with regard to infection courts and feeding sites. The root-knot galling index dropped from 6.0 with a single inoculation of M. hapla to 4.3 and 3.3 with combined inoculations of M. hapla plus UT1B and M. hapla plus UTIC cyst nematode populations. The pathological virulence of H. schachtii to sugarbeet was not lost by extended culturing on tomato; there were no differences in penetration, maturation, and reproduction between sugarbeet populations continually cultured on sugarbeet and the population continually cultured on tomato.  相似文献   

2.
In two glasshouse experiments, relations between sugarbeet root dry weight (y, expressed as a percentage of the maximum dry root weight), and preplanting populations of Heterodera schachtii (Pi) were described by the equation y = 100(Z)Pi-T, in which Z = a constant slightly smaller than 1, and T = the tolerance limit (the value of Pi below which damage was not measureable). T varied with temperature; it was 65 eggs/100 g soil at 23 and 27 C and 430 eggs/100 g soil at 19 C. At 15 and 31 C there was no loss of root dry weight up to the maximum preplanting populations tested. In a field experiment in the Imperial Valley the relation between root yield (y) and Pi was y = 100 (0.99886)Pi - 100, and the tolerance limit was 100 eggs/100 g soil.  相似文献   

3.
Invasion of tomato (Lycopersicon esculentum L.) roots by combined and sequential inoculations of Meloidogyne hapla and a tomato population of Heterodera schachtii was affected more by soil temperature than by nematode competition. Maximum invasion of tomato roots, by M. hapla and H. schachtii occurred at 30 and 26 C, respectively. Female development and nematode reproduction (eggs per plant) of M. hapla was adversely affected by H. schachtii in combined inoculations of the two nematode species. Inhibition of M. hapla development and reproduction on tomato roots from combined nematode inoculations was more pronounced as soil temperature was increased over a range of 18-30 C and with prior inoculation of tomato with H. schachtii. M. hapla minimally affected H. schachtii female development, but there was significant reduction in the buildup of H. schachtii when M. hapla inoculation preceded that of H. schachtii by 20 days.  相似文献   

4.
Sugarbeet yields were contpared with field populations of Heterodera schachtii Schmidt. The correlation between sugarbeet yields and viable larvae/g of soil was negative and high, but that between sugarbeet yields and viable cysts/g of soil was lower. Sugarbeet yields were also compared with H. schachtii populations by years of rotation with a nonhost crop. The coefficients of correlation (r) between yield and viable larvae/g of soil were negative and high: 0 yr of rotation, -0.935; 1 yr, -0.922; 2 yr, -0.954; 3 yr, -0.935; and combined years, -0.965, with 95% confidence limits of -0.91 to -0.98 for combined years. The comparable correlation coefficients between yield and "viable cysts"/g of soil were negative and lower: 0 yr of rotation, -0.151; 1 yr, -0.022; 2 yr, -0.490; 3 yr, -0.456; and combined years, -0.586, with 95% confidence limits of -0.22 to -0.80 for the combined years.  相似文献   

5.
The host-parasite relationships between Heterodera schachtii Schm. and the nematode-resistant diploid Beta vulgaris L. line ''51501'' were examined via serial sections of secondary rootlets. Second-stage larvae penetrated sugarbeet roots and migrated up to 1.95 mm before establishing permanent feeding sites. Most sedentary larvae were oriented parallel to the root axis or in various diagonal or folded positions in the cortex. Nematodes adopted no definite orientation with regard to the root apex. Nematode feeding stimulated formation of multinucleate syncytia in host tissues. Syncytia were 0.3-1.1 mm in length, up to 90 [mu]m × 150 [mu]m in cross section. Root diameters were enlarged close to feeding sites. Usually nematodes deteriorated concomitant with necrosis of syncytia, and dead nematodes frequently appeared macerated or flattened and deformed. Most nematodes did not develop to maturity" in the resistant host tissues, Cavities left by collapse of syncytia were filled by growth of parenchymatous tissue.  相似文献   

6.
7.
Five populations of Heterodera schachtii Schm. from Oregon, Idaho, and Utah did not differ significantly in seedling penetration and rate of emergence and virulence. Another Utah H. schachtii population (Utah 2), however, differed from these five populations in all of the above-mentioned characteristics. More H. schachtii larvae of the Utah 2 population than the other populations penetrated sugarbeet seedlings at 10, 15, 20, and 25 C. Root and top weights of sugarbeet plants were signiticantly less when roots were parasitized by the Utah 2 population than when they were parasitized by larvae of the other nematode populations under similar experimental conditions. Also, the period of larval emergence was shorter in the Utah 2 population than in any of the other H. schachtii populations.  相似文献   

8.
Measurements of second-stage juveniles of Heterodera schachtii from California and The Netherlands and a race of H. trifolii from The Netherlands were obtained and compared to determine if these populations can be differentiated by morphometrics. Juvenile lengths of 10 specimens from each of 10 cysts of each population were measured. Dimensions of tail regions of 20 juveniles from individual cysts of H. schachtii (California) and a like number of juveniles of H. trifolii (The Netherlands) were also obtained. The mean lengths of juveniles of H. schachtii from California and The Netherlands were not significantly different, but similar measurements of H. schachtii and H. trifolii were different (P = 0.05). Mean dimensions of tail lengths, tail widths, tail hyaline lengths, and tail length/tail width were significantly greater for H. trifolii than for H. schachtii. Also, dimensions of eggs of H. trifolii were significantly greater than dimensions of H. schachtii eggs. The investigations established that H. schachtii can be readily differentiated from H. trifolii by morphometrics of eggs and juveniles, Minimum sample sizes required for specified confidence intervals for each criterion measured are provided.  相似文献   

9.
A simulation model of a single sugarbeet, Beta vulgaris L., plant infected by the sugarbeet cyst nematode, Heterodera schachtii Schmidt, was developed using published information. The model is an interactive computer simulation programmed in FORTRAN. Given initial population densities of the nematode at planting, the model simulates nematode population dynamics and the growth of plant tap and fibrous roots. The driving variable for nematode development and plant growth is temperature.  相似文献   

10.
Numbers of cyst and root-knot nematodes and percentage parasitism by the nematophagous fungus Hirsutella rhossiliensis were quantified in microplots over 2 years. The microplots contained either sugarbeets in loam infested with Heterodera schachtii or tomatoes in sand infested with Meloidogyne javanica. The fungus was added to half of the microplots for each crop. Although H. rhossiliensis established in both microplot soils, the percentage of nematodes parasitized did not increase with nematode density and nematode numbers were not affected by the fungus. The results indicate that long-term interactions between populations of the fungus and cyst or root-knot nematodes will not result in biological control.  相似文献   

11.
Experiments showed that development of male and female Heterodera schachtii on tomato and sugarbeet are disproportionately influenced by the nematode inoculum level and root size, which together determine the density of invading larvae. Slight overcrowding favored development of males over females, whereas severe overcrowding equally affected development of males and females. Differential population changes of host-selected races on tested cultivars was attributable to selective development of male and female nematodes.  相似文献   

12.
Aldicarb, carbofuran, fensulfothion, and phenamiphos were tested in concentrations of 1-100 μg/ml for their effects on hatching of Heterodera schachtii. Exposure of cysts to 1 μg aldicarb or carbofuran/ml stimulated hatch whereas phenamiphos and, to a lesser degree, fensulfothion inhibited hatch. Addition of aldicarb to sugarbeet root diffusate or 4 mM zinc chloride suppressed activities of these hatching agents. Transfer of cysts previously treated with aldicarb or carbofuran to zinc chloride or water rapidly initiated hatch which finally exceeded the hatch from cysts not treated with the nematicides.  相似文献   

13.
14.
Aqueous solutions of technical-grade phenamiphos [ethyl 3-methyl-4-(methylthio) phenyl (1-methylethyl) phosphoratnidale] were used in hatching chambers to test, under laboratory tory conditions, the effect of phenamiphos on the hatching and movement of Meloiclogyne javanica and Heterodera schachtii. Hatch of M. javanica and H. schachtii eggs was depressed 70 and 88% by nematicide at 0.48 and 4.80 μg/ml, respectively. The infectivity of second-stage larvae of both species was affected by concentrations as low as 0.01 μg/ml. At least 0.5 μg/ml was required to decrease the movement of larvae of M. javanica and H. schachtii. To decrease the movement of H. schachtii males toward females, 10 μg/ml was required. In a field experiment using a 15% granular formulation, 5 kg/ha a.i. significantly reduced infection of sugarbeet roots by H. schachtii.  相似文献   

15.
Influence of Meloidogyne hapla on estahlishnrent and maturity of Heterodera schachtii in sugarbeet was studied. Results indicated that when the majority of M. hapla were in second, third, or fourth larval stages within plants prior to H. schachtii inoculation, growth and development of the latter was retarded. However, when M. hapla reached the young female stage prior to inoculation of H. schachtii, establishment and development of the latter was greatly enhanced. As M. hapla reached maturity before and after egg production prior to H. schachtii inoculation, establishment and growth of the latter was progressively decreased. In each instance, M. hapla developed independently and matured at the same rate as in plants inoculated with only M. hapla. Usually ratios of total soluble carbohydrates to reducing carbohydrates were lower, but not significantly different, in plants receiving both nematodes as compared to other treatments.  相似文献   

16.
Because rapeseed, especially canola, has the potential to be grown in rotation with sugarbeet in the north-central region of the United States, this study was initiated to assess its susceptibility to infection by Heterodera schachtii and to develop a screening method for Brassica germplasm. Existing methodology was adapted for growing Brassica juncea, B. napus, B. rapa, Brassica hybrids, and sugarbeet, Beta vulgaris, in H. schachtii-infested soil to count the females that developed on the roots. Cysts on sugarbeet contained a mean of 130 eggs compared with 240 for B. napus, lowest for the Brassica. Viability of eggs produced was assessed in soil planted with Brassica and sugarbeet and infested with with 0, 100, 1,000, 3,000, and 5,000 eggs to count resulting females and cysts. Number of females (y) was related linearly to infestation rate (x) by the regression equations y = 2.82 + 0.07(x) for the Brassica lines (R² = 0.79; P < 0.001) and y = 0.43 + 0.04(x) for sugarbeet (R² = 0.69; P < 0.007). These data indicated the potential for H. schachtii population increase if the two crops are used in rotation. All of the 111 germplasm lines tested were susceptible. The methodology developed during this research would benefit attempts to develop rapeseed cultivars resistant to H. schachtii.  相似文献   

17.
Two hundred thirty-five cultivated varieties, breeding lines and plant introductions of Arachis hypogaea and 12 accessions of wild Arachis spp. were tested for resistance to Meloidogyne hapla. Eight of the cultivated peanut lines were only moderately susceptible and four of the wild peanuts exhibited resistance. No resistance-breaking M. hapla populations were found among 10 geographical isolates tested.  相似文献   

18.
Heterodera schachtii significantly (P = 0.05) reduced sugarbeet root growth below that of uninoculated controls at 20, 24, and 28 C, and Ditylenchus dipsaci significantly (P = 0.05) reduced root growth below that of uninoculated controls at 16, 20, 24, and 28 C. A combination of H. schachtii and D. dipsaci significantly (P = 0.05) reduced root growth below that of single inoculations of H. schachtii at all temperatures and D. dipsaci at 20, 24, and 28 C. Single inoculations of H. schachtii and D. dipsaci significantly (P = 0.05) reduced top growth of sugarbeet below that of uninoculated controls at 20, 24, and 28 C, and 16, 20, 24, and 28 C, respectively. A combination of the two nematodes significantly (P = 0.05) reduced top growth below that of single inoculations of H. schachtii at all temperatures. However, a combination of the two nematodes failed to significantly (P = 0.05) reduce top growth below that of single inoculations of D. dipsaci at any temperature. Inoculations of either H. schachtii or D. dipsaci did not affect penetration of the other nematode, and D. dipsaci did not affect development and reproduction of H. schachtii. D. dipsaci did not reproduce on sugarbeet.  相似文献   

19.
A direct relationship exists between soil temperature and Heterodera schachtii development. The average developmental period of two nematode populations from Lewiston, Utah, and Rupert, Idaho, from J2 to J3, J4, adult, and the next generation J2 at soil temperatures of 18-28 C were 100, 140,225, and 399 degree-days (base 8 C), respectively. There was a positive relationship (P < 0.05) between nematode Pi, nematode generations, and sugarbeet yields. The greatest sugarbeet growth inhibition (87%) occurred when sugarbeets were exposed to a Pi of 12 eggs/cm³ soil for five generations (1,995 degree-days), compared with a 47% inhibition when plants were exposed to the same Pi for two generations. There was a negative correlation (P < 0.05) between the Pi, Pf, and sugarbeet yield for each population threshold. The smaller the Pi, the greater the sugarbeet yields and the greater the Pf. Root yields were 80 and 29 t /ha and Pf were 8.4 and 3.6 eggs/cm³ soil when sugarbeet seeds were planted at Pi of 0.4 and 7.9 eggs/cm³. respectively, at a soil temperature of 8 C. The number of years rotation with a nonhost crop required to reduce the nematode population density below a damage threshold level of 2 eggs/cm³ depends on the Pi. A Pi of 33.8 eggs/cm³ soil required a 5-year crop rotation, whereas a Pi of 8.4 eggs/cm³ soil required a 2-year crop rotation.  相似文献   

20.
High initial population densities of Heterodera schachtii larvae (36 and 108/gm of soil) greatly retarded the seedling emergence of sugar beet ''Monogerm CSF 1971'' in Vineland fine sandy loam. In comparison with controls, initial population densities (Pi''s) of 1.7, 3.0, 6.2, and 14.4 larvae/gm of soil respectively reduced the weight of storage roots by 38, 56, 64, and 92%. Weights of tops also decreased with increases in Pi; weights of tap and small feeder roots tended to be higher at all Pi''s except the highest. Sucrose percentage was not affected by any initial nematode density. The populations were lower at midseason than at seeding, and at harvest had increased greatly, with respective populations of 339, 402, 222, and 140 larvae/gm of soil. At harvest, cysts/gm of soil and cysts/gm of root were respectively 4.4 and 72, 6.1 and 99, 6.1 and 191, and 5.8 and 140. The maximum rate of multiplication was 150-200. and maximum density was 400 larvae/gm of soil. The high pathogenicity and multiplication rate of the nematode was attributed to optimum temperature conditions and soil type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号