首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The postembryonic nongonadal cell lineages of the nematode Panagrellus redivivus are described and compared with those of Caenorhabditis elegans. The newly hatched larvae of P. redivivus females and males and C. elegans hermaphrodites and males are very similar. An almost identical set of blast cells divides postembryonically in P. redivivus and C. elegans to produce similar changes in the neuronal, muscular, hypodermal, and digestive systems. Most of these cell lineages are invariant; however, there is substantial variability in the number of cell divisions in the relatively extensive lineages of the lateral hypodermis of P. redivivus. Typically, in P. redivivus females, 55 blast cells generate 635 surviving progeny and 29 cell deaths; in P. redivivus males, 59 blast cells generate 758 surviving progeny and 35 cell deaths. The lineages generating the cells of the male tails of P. redivivus and C. elegans are almost identical; thus, the grossly different characteristics of these structures must reflect differences in the morphogenesis of cells equivalent in lineage history. Laser ablation experiments demonstrate that the gonad induces vulva development and that cell-cell interactions are important in specifying the fates of hypodermal precursor cells. The lateral hypodermal lineages provide striking examples of the apparent construction of complex lineages from modular sublineages; one simple pattern of cell divisions and cell fates occurs 70 times in the P. redivivus female. The differences in cell lineage between P. redivivus and C. elegans are relatively minor, and many appear to have involved two types of evolutionary change: the replacement of sublineages, and the modification of sublineages by the four classes of lineage transformations previously proposed based on a comparison of P. redivivus and C. elegans gonadal cell lineages (Sternberg and Horvitz, 1981). These types of differences suggest that the genetic programming of cell lineage includes instructions specifying where and when a particular sublineage is utilized, and other instructions specifying the nature of that sublineage.  相似文献   

2.
To explore the nature of cell lineage modifications that have occurred during evolution, the gonadal cell lineages of the nematode Panagrellus redivivus have been determined and compared to the known gonadal lineages of Caenorhabditis elegans (J. Kimble and D. Hirsh, 1979, Develop. Biol.70, 396–417). Essentially invariant lineages generate the 143 somatic cells of the male gonad and at least 326 somatic cells of the female gonad of P. redivivus. The basic program of gonadogenesis is strikingly similar among both sexes of both species. For example, the early division patterns of the somatic gonad precursors Z1 and Z4 are almost identical. Later division patterns are more divergent and, in a few cases, generate structures that are species specific. In general, similar cell types are produced after similar patterns of cell divisions. Differences among the Z1 and Z4 cell lineages appear to reflect phylogenetic modifications of a common developmental program. The nature of these differences suggests that the evolution of cell lineages involves four distinct classes of alterations: switches in the fate of a cell to that normally associated with another cell; reversals in the polarity of the lineage generated by a blast cell; alterations in the number of rounds of cell division; and an “altered segregation” of developmental potential, so that a potential normally associated with one cell instead becomes associated with its sister. A number of cell deaths occur during gonadogenesis in P. redivivus. The death of Z4.pp, a cell that controls the development of the posterior ovary in C. elegans, probably prevents the development of a posterior ovary in P. redivivus and hence is responsible for the gross difference in the morphologies of the gonads of the P. redivivus female and the C. elegans hermaphrodite. As exemplified by the death of Z4.pp, an alteration in the fate of a “regulatory cell” could facilitate rapid and/or discontinuous evolutionary change.  相似文献   

3.
Comparative genomic analysis of important signaling pathways in Caenorhabditis briggsae and Caenorhabditis elegans reveals both conserved features and also differences. To build a framework to address the significance of these features we determined the C. briggsae embryonic cell lineage, using the tools StarryNite and AceTree. We traced both cell divisions and cell positions for all cells through all but the last round of cell division and for selected cells through the final round. We found the lineage to be remarkably similar to that of C. elegans. Not only did the founder cells give rise to similar numbers of progeny, the relative cell division timing and positions were largely maintained. These lineage similarities appear to give rise to similar cell fates as judged both by the positions of lineally equivalent cells and by the patterns of cell deaths in both species. However, some reproducible differences were seen, e.g., the P4 cell cycle length is more than 40% longer in C. briggsae than that in C. elegans (p < 0.01). The extensive conservation of embryonic development between such divergent species suggests that substantial evolutionary distance between these two species has not altered these early developmental cellular events, although the developmental defects of transpecies hybrids suggest that the details of the underlying molecular pathways have diverged sufficiently so as to not be interchangeable.  相似文献   

4.
The nematode Caenorhabditis elegans (C. elegans) is an ideal model organism to study the cell fate specification mechanisms during embryogenesis. It is generally believed that cell fate specification in C. elegans is mainly mediated by lineage-based mechanisms, where the specification paths are driven forward by a succession of asymmetric cell divisions. However, little is known about how each binary decision is made by gene regulatory programs. In this study, we endeavor to obtain a global understanding of cell lineage/fate divergence processes during the early embryogenesis of C. elegans. We reanalyzed the EPIC data set, which traced the expression level of reporter genes at single-cell resolution on a nearly continuous time scale up to the 350-cell stage in C. elegans embryos. We examined the expression patterns for a total of 131 genes from 287 embryos with high quality image recordings, among which 86 genes have replicate embryos. Our results reveal that during early embryogenesis, divergence between sister lineages could be largely explained by a few genes. We predicted genes driving lineage divergence and explored their expression patterns in sister lineages. Moreover, we found that divisions leading to fate divergence are associated with a large number of genes being differentially expressed between sister lineages. Interestingly, we found that the developmental paths of lineages could be differentiated by a small set of genes. Therefore, our results support the notion that the cell fate patterns in C. elegans are achieved through stepwise binary decisions punctuated by cell divisions. Our predicted genes driving lineage divergence provide good starting points for future detailed characterization of their roles in the embryogenesis in this important model organism.  相似文献   

5.
Caenorhabditis elegans and Panagrellus redivivus were investigated for surface carbohydrates using fluorescent-labelled and ferritin-labelled lectins. Rhodamine-labelled Concanavalin A was specifically located in the cephalic region of both species. Rhodamine-labelled wheat germ agglutinin was located over the entire cuticle of P. redivivus but was absent on C. elegans. Rhodamine-labelled peanut agglutinin and Limax flavus agglutinin did not label nematodes of either species. Galactose and sialic acid were not detected on either species, whereas mannose-glucose residues were specifically localized in the head areas of both species. No detectable N-acetylglucosamine occurred on C. elegans, but it was evenly distributed over the cuticle surface of P. redivivus.  相似文献   

6.
7.
Vulval epithelial tubes invaginate through concerted cell migration, ring formation, stacking of rings and intra-ring cell fusion in the nematodes Caenorhabditis elegans, Oscheius tipulae and Pristionchus pacificus. The number of rings forming the invaginations is invariantly seven, six, and eight, respectively. We hypothesize that each ring is formed from pairs of symmetrically positioned primordial vulval cells following three premises: If the final cell division is left-right, the daughters will fuse, migrate and form only one ring. If these cells do not divide, one ring will form. If the final division is anterior-posterior, two rings will form. We test the ring hypothesis and found coincidence between the patterns of vulva cell divisions and the number of rings for 12 species. We find heterochronic variations in the timing of division, migration and fusion of the vulval cells between species. We report a unique ring-independent pathway of vulva formation in Panagrellus redivivus. C. elegans lin-11(n389) mutation results in cell fate transformations including changes in the orientation of vulval cell division. lin-11 animals have an additional ring, as predicted by the ring hypothesis. We propose that the genetic pathway determining how vulval cells invaginate evolves through ring-dependent and ring-independent mechanisms.  相似文献   

8.
Embryonic segmentation in clitellate annelids (oligochaetes and leeches) is a cell lineage-driven process. Embryos of these worms generate a posterior growth zone consisting of 5 bilateral pairs of identified segmentation stem cells (teloblasts), each of which produces a column of segmental founder cells (blast cells). Each blast cell generates a lineage-specific clone via a stereotyped sequence of cell divisions, which are typically unequal both in terms of the relative size of the sister cells and in the progeny to which they give rise. In two of the five teloblast lineages, including the ventralmost, primary neurogenic (N) lineage, the blast cells adopt two different fates, designated nf and ns, in exact alternation within the blast cell column; this is termed a grandparental stem cell lineage. To lay groundwork for investigating unequal divisions in the leech Helobdella, we have surveyed the Helobdella robusta genome for genes encoding orthologs of the Rho family GTPases, including the rho, rac and cdc42 sub-families, which are known to be involved in multiple processes involving cell polarization in other systems. We find that, in contrast to most other known systems the Helobdella genome contains two cdc42 orthologs, one of which is expressed at higher levels in the ns blast cells than in nf blast cells. We also demonstrate that the asymmetric divisions of the primary nf and ns blast cells are regulated by the polarized distribution of the activated form of the Cdc42 protein, rather than by the overall level of expression. Our results provide the first molecular insights into the mechanisms of the grandparental stem cell lineages, a novel, yet evolutionarily ancient stem cell division pattern. Our results also provide an example in which asymmetries in the distribution of Cdc42 activity, rather than in the overall levels of Cdc42 protein, are important regulating unequal divisions in animal cells.  相似文献   

9.
Material antigenically related to the neuromodulatory peptide FMRFamide was detected and examined in preparations of the soybean cyst nematode, Heterodera glycines, and in the free-living nematodes Caenorhabditis elegans and Panagrellus redivivus. FMRFamide-related peptides were quantified by an enzyme-linked immunosorbent assay. Specific activities were remarkably similar among all of the vermiform members of the three species. FMRFamide-related peptide immunoactivity was present in both sexes and all stages of H. glycines examined. The highest specific activity was present in second-stage juveniles and in males, and the lowest in white and yellow females. Total FMRFamide-related peptide level per individual was highest in brown females, with 90% of the activity associated with the eggs. Peptide levels in these eggs and in second-stage juveniles were comparable and increased in adults, especially in females. Chromatographic analysis of FMRFamide-related peptide preparations from H. glycines juveniles, C. elegans, and P. redivivus revealed distinct qualitative differences between the infective plant parasite and the free-living nematodes.  相似文献   

10.
During Drosophila embryogenesis, timely and orderly asymmetric cell divisions ensure the correct number of each cell type that make up the sensory organs of the larval PNS. We report a role of scraps, Drosophila Anillin, during these divisions. Anillin, a constitutive member of the contractile ring is essential for cytokinesis in Drosophila and vertebrates. During embryogenesis we find that zygotically transcribed scraps is required specifically for the unequal cell divisions, those in which cytokinesis occurs in an “off-centred” manner, of the pIIb and pIIIb neuronal precursor cells, but not the equal cell divisions of the lineage related precursor cells. Complementation and genetic rescue studies demonstrate this effect results from zygotic scraps and leads to polyploidy, ectopic mitosis, and loss of the neuronal precursor daughter cells. The net result of which is the formation of incomplete sense organs and embryonic lethality.  相似文献   

11.
As a fundamental process of development, cell proliferation must be coordinated with other processes such as fate differentiation. Through statistical analysis of individual cell cycle lengths of the first 8 out of 10 rounds of embryonic cell division in Caenorhabditis elegans, we identified synchronous and invariantly ordered divisions that are tightly associated with fate differentiation. Our results suggest a three-tier model for fate control of cell cycle pace: the primary control of cell cycle pace is established by lineage and the founder cell fate, then fine-tuned by tissue and organ differentiation within each lineage, then further modified by individualization of cells as they acquire unique morphological and physiological roles in the variant body plan. We then set out to identify the pace-setting mechanisms in different fates. Our results suggest that ubiquitin-mediated degradation of CDC-25.1 is a rate-determining step for the E (gut) and P3 (muscle and germline) lineages but not others, even though CDC-25.1 and its apparent decay have been detected in all lineages. Our results demonstrate the power of C. elegans embryogenesis as a model to dissect the interaction between differentiation and proliferation, and an effective approach combining genetic and statistical analysis at single-cell resolution.  相似文献   

12.
13.
The number of nongonadal nuclei in the free-living soil nematode Caenorhabditis elegans increases from about 550 in the newly hatched larva to about 810 in the mature hermaphrodite and to about 970 in the mature male. The pattern of cell divisions which leads to this increase is essentially invariant among individuals; rigidly determined cell lineages generate a fixed number of progeny cells of strictly specified fates. These lineages range in length from one to eight sequential divisions and lead to significant developmental changes in the neuronal, muscular, hypodermal, and digestive systems. Frequently, several blast cells follow the same asymmetric program of divisions; lineally equivalent progeny of such cells generally differentiate into functionally equivalent cells. We have determined these cell lineages by direct observation of the divisions, migrations, and deaths of individual cells in living nematodes. Many of the cell lineages are involved in sexual maturation. At hatching, the hermaphrodite and male are almost identical morphologically; by the adult stage, gross anatomical differences are obvious. Some of these sexual differences arise from blast cells whose division patterns are initially identical in the male and in the hermaphrodite but later diverge. In the hermaphrodite, these cells produce structures used in egg-laying and mating, whereas, in the male, they produce morphologically different structures which function before and during copulation. In addition, development of the male involves a number of lineages derived from cells which do not divide in the hermaphrodite. Similar postembryonic developmental events occur in other nematode species.  相似文献   

14.
Zebrafish transgenic lines are important experimental tools for lineage tracing and imaging studies. It is crucial to precisely characterize the cell lineages labeled in transgenic lines to understand their limitations and thus properly interpret the data obtained from their use; only then can we confidently select a line appropriate for our particular research objectives. Here we profiled the cell lineages labeled in the closely related neural crest transgenic lines Tg(foxd3:GFP), Tg(sox10:eGFP) and Tg(sox10:mRFP). These fish were crossed to generate embryos, in which foxd3 and sox10 transgenic neural crest labeling could be directly compared at the cellular level using live confocal imaging. We have identified key differences in the cell lineages labeled in each line during early neural crest development and demonstrated that the most anterior cranial neural crest cells initially migrating out of neural tube at the level of forebrain and anterior midbrain express sox10:eGFP and sox10:mRFP, but not foxd3:GFP. This differential profile was robustly maintained in the different-tiating progeny of the neural crest lineages until 3.5dpf. Our data will enable researchers to make an informed choice in selecting transgenic lines for future neural crest research.  相似文献   

15.
Stomata are epidermal bi-celled structures that differentiate within special cell lineages initiated by a subset of protodermal cells. Recently, we showed that the Arabidopsis photomorphogenic repressor COP10 controls specific cell-lineage and cell-signaling developmental mechanisms in stomatal lineages. Loss-of-function cop10-1 mutant cotyledons and leaves produced (in the light and in the dark) abundant stomatal clusters, but nonlineage epidermal cells were not affected. Here we examine COP10 role in hypocotyls, cylindrical organs displaying a distinct epidermal organization with alternate files of protruding and non-protruding cells, with the latter producing a limited number of stomata. COP10 prevents stomatal clusters and restricts stomata production in hypocotyls; these roles are specific to lineage cells as in cotyledons, since COP10 loss of function does not elicit stomatal fate in nonlineage cells; COP10 also sustains the directional cell expansion of all hypocotyl epidermal cell types, and seems necessary for the differentiation between protruding and non-protruding cell files.  相似文献   

16.
The processes and mechanisms underlying the diversification of host–microbe endosymbiotic associations are of evolutionary interest. Here we investigated the bacteriocyte-associated primary symbionts of weevils wherein the ancient symbiont Nardonella has experienced two independent replacement events: once by Curculioniphilus symbiont in the lineage of Curculio and allied weevils of the tribe Curculionini, and once by Sodalis-allied symbiont in the lineage of grain weevils of the genus Sitophilus. The Curculioniphilus symbiont was detected from 27 of 36 Curculionini species examined, the symbiont phylogeny was congruent with the host weevil phylogeny, and the symbiont gene sequences exhibited AT-biased nucleotide compositions and accelerated molecular evolution. These results suggest that the Curculioniphilus symbiont was acquired by an ancestor of the tribe Curculionini, replaced the original symbiont Nardonella, and has co-speciated with the host weevils over evolutionary time, but has been occasionally lost in several host lineages. By contrast, the Sodalis-allied symbiont of Sitophilus weevils exhibited no host–symbiont co-speciation, no AT-biased nucleotide compositions and only moderately accelerated molecular evolution. These results suggest that the Sodalis-allied symbiont was certainly acquired by an ancestor of the Sitophilus weevils and replaced the original Nardonella symbiont, but the symbiotic association must have experienced occasional re-associations such as new acquisitions, horizontal transfers, replacements and/or losses. We detected Sodalis-allied facultative symbionts in populations of the Curculionini weevils, which might represent potential evolutionary sources of the Sodalis-allied primary symbionts. Comparison of these newcomer bacteriocyte-associated symbiont lineages highlights potential evolutionary trajectories and consequences of novel symbionts after independent replacements of the same ancient symbiont.  相似文献   

17.
Molecular genetic methods can distinguish divergent evolutionary lineages in what previously appeared to be single species, but it is not always clear what functional differences exist between such cryptic species. We used a metabolomic approach to profile biochemical phenotype (metabotype) differences between two putative cryptic species of the earthworm Lumbricus rubellus. There were no straightforward metabolite biomarkers of lineage, i.e. no metabolites that were always at higher concentration in one lineage. Multivariate methods, however, identified a small number of metabolites that together helped distinguish the lineages, including uncommon metabolites such as Nε-trimethyllysine, which is not usually found at high concentrations. This approach could be useful for characterizing functional trait differences, especially as it is applicable to essentially any species group, irrespective of its genome sequencing status.  相似文献   

18.
A Transparent Window into Biology: A Primer on Caenorhabditis elegans   总被引:1,自引:0,他引:1  
A little over 50 years ago, Sydney Brenner had the foresight to develop the nematode (round worm) Caenorhabditis elegans as a genetic model for understanding questions of developmental biology and neurobiology. Over time, research on C. elegans has expanded to explore a wealth of diverse areas in modern biology including studies of the basic functions and interactions of eukaryotic cells, host–parasite interactions, and evolution. C. elegans has also become an important organism in which to study processes that go awry in human diseases. This primer introduces the organism and the many features that make it an outstanding experimental system, including its small size, rapid life cycle, transparency, and well-annotated genome. We survey the basic anatomical features, common technical approaches, and important discoveries in C. elegans research. Key to studying C. elegans has been the ability to address biological problems genetically, using both forward and reverse genetics, both at the level of the entire organism and at the level of the single, identified cell. These possibilities make C. elegans useful not only in research laboratories, but also in the classroom where it can be used to excite students who actually can see what is happening inside live cells and tissues.  相似文献   

19.
The TALE homeodomain-containing PBC and MEIS proteins play multiple roles during metazoan development. Mutations in these proteins can cause various disorders, including cancer. In this study, we examined the roles of MEIS proteins in mesoderm development in C. elegans using the postembryonic mesodermal M lineage as a model system. We found that the MEIS protein UNC-62 plays essential roles in regulating cell fate specification and differentiation in the M lineage. Furthermore, UNC-62 appears to function together with the PBC protein CEH-20 in regulating these processes. Both unc-62 and ceh-20 have overlapping expression patterns within and outside of the M lineage, and they share physical and regulatory interactions. In particular, we found that ceh-20 is genetically required for the promoter activity of unc-62, providing evidence for another layer of regulatory interactions between MEIS and PBC proteins.  相似文献   

20.
Metazoan stem cells repopulate tissues during adult life by dividing asymmetrically to generate another stem cell and a cell that terminally differentiates. Wnt signaling regulates the division pattern of stem cells in flies and vertebrates. While the short-lived nematode C. elegans has no adult somatic stem cells, the lateral epithelial seam cells divide in a stem cell-like manner in each larval stage, usually generating a posterior daughter that retains the seam cell fate and an anterior daughter that terminally differentiates. We show that while wild-type adult animals have 16 seam cells per side, animals with reduced function of the TCF homolog POP-1 have as many as 67 seam cells, and animals with reduced function of the β-catenins SYS-1 and WRM-1 have as few as three. Analysis of seam cell division patterns showed alterations in their stem cell-like divisions in the L2-L4 stages: reduced Wnt signaling caused both daughters to adopt non-seam fates, while activated Wnt signaling caused both daughters to adopt the seam fate. Therefore, our results indicate that Wnt signaling globally regulates the asymmetric, stem cell-like division of most or all somatic seam cells during C. elegans larval development, and that Wnt pathway regulation of stem cell-like behavior is conserved in nematodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号