首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Primordial germ cells (PGCs) and somatic cells originate from postimplantation epiblast cells in mice. As pluripotency is lost upon differentiation of somatic lineages, a naive epigenome and the pluripotency network are re‐established during PGC development. Here we demonstrate that Prdm14 contributes not only to PGC specification, but also to naive pluripotency in embryonic stem (ES) cells by repressing the DNA methylation machinery and fibroblast growth factor (FGF) signalling. This indicates a critical role for Prdm14 in programming PGCs and promoting pluripotency in ES cells.  相似文献   

5.
Epigenetic gene control is involved in mechanisms of development. Little is known about the cooperation of nuclear and chromatin events in programmed differentiation from mouse embryonic stem cells (ESC). To address this, Oct3/4-positive ESC and differentiated progenies, Sox1-positive neural precursor cells (NPC) and post-mitotic neurons (PMN), were isolated using a stage-selected culture system. We first investigated global nuclear organization at the each stage. Chromocenter preexists in ESC, disperses in NPC and becomes integrated into large heterochromatic foci in PMN, while the formation of PML bodies markedly decreases in neural differentiation. We next focused on the gene-dense MHC-Oct3/4 region. Oct3/4 gene is expressed preferentially adjacent to PML bodies in ESC and are repressed in the absence of chromocenter association in NPC and PMN. Histone deacetylation in NPC, demethylation of lysine 4 of histone H3 (H3K4), tri-methylation of H3K27, and CpG methylation in PMN are targeted for the Oct3/4 promoter within the region. Interestingly, di-methyl H3K4 mark is present in Oct3/4 promoter in NPC as well as ESC. These findings provide insights into the molecular basis of global nuclear reorganization and euchromatic gene silencing in differentiation through the spatiotemporal order of epigenetic controls.  相似文献   

6.
7.
Germ cell sex is defined by factors derived from somatic cells. CYP26B1 is known to be a male sex-promoting factor that inactivates retinoic acid (RA) in somatic cells. In CYP26B1-null XY gonads, germ cells are exposed to a higher level of RA than in normal XY gonads and this activates Stra8 to induce meiosis while male-specific gene expression is suppressed. However, it is unknown whether meiotic entry by an elevated level of RA is responsible for the suppression of male-type gene expression. To address this question, we have generated Cyp26b1/Stra8 double knockout (dKO) embryos. We successfully suppressed the induction of meiosis in CYP26B1-null XY germ cells by removing the Stra8 gene. Concomitantly, we found that the male genetic program represented by the expression of NANOS2 and DNMT3L was totally rescued in about half of dKO germ cells, indicating that meiotic entry causes the suppression of male differentiation. However, half of the germ cells still failed to enter the appropriate male pathway in the dKO condition. Using microarray analyses together with immunohistochemistry, we found that KIT expression was accompanied by mitotic activation, but was canceled by inhibition of the RA signaling pathway. Taken together, we conclude that inhibition of RA is one of the essential factors to promote male germ cell differentiation, and that CYP26B1 suppresses two distinct genetic programs induced by RA: a Stra8-dependent meiotic pathway, and a Stra8-independent mitotic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号