首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Population increase of Pratylenchus hexincisus on corn was tested over 3 months at 15, 20, 25, and 30 C in Marshall silt loam, Clarion silt loam, Buckner coarse sand, and Haig silty clay loam soils. The optimum temperature for increase was 30 C in all soils. The nematode population was significantly larger in Buckner coarse sand than in other soil types at 50 C. The recovered P. hexincisus populations equaled or exceeded initial inoculum levels at the two higher temperatures in Marshall silt loam and Haig silty clay loam and at 30 C in Clarion silt loam and Buckner coarse sand. P. hexincisus required 32,400 heat units in Haig silty clay loam and more than 40,000 heat units in the three other soil types to reach a level that is known to cause significant height and biomass reduction in corn under controlled condition.  相似文献   

2.
Soybean cultivars are extremely diverse in time to flowering and maturation as a result of various photoperiod sensitivities. The underlying molecular genetic mechanism is not fully clear, however, four maturity loci E1, E2, E3 and E4 have been molecularly identified. In this report, cultivars were selected with various photoperiod sensitivities from different ecological zones, which covered almost all maturity groups (MG) from MG 000 to MG VIII and MG X adapted from latitude N 18° to N 53°. They were planted in the field under natural daylength condition (ND) in Beijing, China or in pots under different photoperiod treatments. Maturity-related traits were then investigated. The four E maturity loci were genotyped at the molecular level. Our results suggested that these four E genes have different impacts on maturity and their allelic variations and combinations determine the diversification of soybean maturity and adaptation to different latitudes. The genetic mechanisms underlying photoperiod sensitivity and adaptation in wild soybean seemed unique from those in cultivated soybean. The allelic combinations and functional molecular markers for the four E loci will significantly assist molecular breeding towards high productivity.  相似文献   

3.
4.
Nematodes produced in monoxenic culture are used for many research purposes. To maximize the number of Heterodera glycines produced in culture, 24 soybean cultivars (maturity groups 0-8) were evaluated for host suitability. A strain of H. glycines race 3, maintained in monoxenic culture on excised soybean root tips of cv. Kent, was inoculated into 20 petri dishes of each cultivar. The highest numbers of first-generation females per petri dish were produced on cultivars Bass, Williams 82, Kent, Proto, and Chapman, and the lowest on cultivars Lambert and Chesapeake. A diapause-like period with decreased nematode production was recorded on some cultivars but not others. Six generations of cultivation on CX 366 did not affect the number of females produced. The results indicated that soybean maturity group could not be used as a parameter for selecting the optimum cultivars for nematode production, and that only J2 petri dishes needed to be counted to determine a 60-female difference per petri dish among cultivars. This study demonstrated that H. glycines populations in monoxenic culture can be more than quadrupled by selection of an appropriate soybean cultivar.  相似文献   

5.
Florunner peanut and three soybean cultivars, Centennial, Gasoy 17, and Wright, were inoculated with 48-hour age cohorts of Meloidogyne arenari race 1 second-stage juveniles and placed in a growth chamber set to simulate early season (low temperature) and midseason (high temperature) conditions. Percentages of the initial inoculum penetrating roots 4 and 8 days after inoculation were 2-3 times higher in soybean cultivars than in peanut; 25% on susceptible soybean and 9% on peanut. Penetration and early development of M. arenaria were greater in the higher temperature environment. Penetration percentages were expressed as a function of cumulative degree-days by regression models. Development of M. arenaria 10, 20, and 30 days after inoculation was more rapid on peanut than on soybean. The resistant soybean cultivar Wright had slower development rates than did the other two soybean cultivars. Nematode growth and development were dependent on temperature. In greenhouse experiments, production of eggs by M. arenaria was more than 10 times greater on peanut than on susceptible soybean. The reproductive factor for Wright soybean was less than one, but plant growth parameters indicated that this cultivar was intolerant of M. arenavia.  相似文献   

6.
7.
Several abiotic and biotic stresses can affect soybean in a growing season. Heterodera glycines, soybean cyst nematode, reduces yield of soybean more than any other pathogen in the United States. Field and greenhouse studies were conducted to determine whether preemergence and postemergence herbicides modified the reproduction of H. glycines, and to determine the effects of possible interactive stresses caused by herbicides and H. glycines on soybean growth and yield. Heterodera glycines reproduction factor (Rf) generally was less on resistant than susceptible cultivars, resulting in a yield advantage for resistant cultivars. The yield advantage of resistant cultivars was due to more pods per plant on resistant than susceptible cultivars. Pendimethalin reduced H. glycines Rf on the susceptible cultivars in 1998 at Champaign, Illinois, and in greenhouse studies reduced dry root weight of H. glycines-resistant and susceptible cultivars, therefore reducing Rf on the susceptible cultivars. The interactive stresses from acifluorfen or imazethapyr and H. glycines reduced the dry shoot weight of the resistant cultivar Jack in a greenhouse study. Herbicides did not affect resistant cultivars'' ability to suppress H. glycines Rf; therefore, growers planting resistant cultivars should make herbicide decisions based on weeds present and cultivar tolerance to the herbicide.  相似文献   

8.
Soybean cultivation holds great potential for a sustainable agriculture in Europe, but adaptation remains a central issue. In this large mega‐environment (MEV) study, 75 European cultivars from five early maturity groups (MGs 000–II) were evaluated for maturity‐related traits at 22 locations in 10 countries across Europe. Clustering of the locations based on phenotypic similarity revealed six MEVs in latitudinal direction and suggested several more. Analysis of maturity identified several groups of cultivars with phenotypic similarity that are optimally adapted to the different growing regions in Europe. We identified several haplotypes for the allelic variants at the E1, E2, E3 and E4 genes, with each E haplotype comprising cultivars from different MGs. Cultivars with the same E haplotype can exhibit different flowering and maturity characteristics, suggesting that the genetic control of these traits is more complex and that adaptation involves additional genetic pathways, for example temperature requirement. Taken together, our study allowed the first unified assessment of soybean‐growing regions in Europe and illustrates the strong effect of photoperiod on soybean adaptation and MEV classification, as well as the effects of the E maturity loci for soybean adaptation in Europe.  相似文献   

9.
Transgenic soybean cultivars, resistant to glyphosate herbicide in maturity groups V and VI, were evaluated for tolerance to the Columbia lance nematode, Hoplolaimus columbus, in field experiments conducted in 1998 and 1999. Treatment with 43 liter/ha of 1,3-dichloropropene was effective in suppressing H. columbus population densities in a split-plot design. Fumigation increased soybean yield, but a significant cultivar × fumigation interaction indicated variation in cultivar response to H. columbus. A tolerance index (yield of nontreated ÷ yield of treated × 100) was used to compare cultivar differences. Two cultivars in maturity group VI and one cultivar in maturity group V had a tolerance index greater than 90, indicating a high level of tolerance.  相似文献   

10.
The effects of temperature and soil type on interstrain competition of Bradyrhizobium japonicum and on nodulation and nitrogen accumulation in five soybean varieties belonging to four maturity groups were investigated at three sites devoid of soybean rhizobia along an elevational transect in Hawaii. Competition patterns of the three B. japonicum strains were unaffected by soil type or soil temperature. Strain USDA 110 was the best competitor, occupying on the average 81 and 64% of the nodules in the field and greenhouse experiments, respectively. Strain USDA 138 was the least successful in the field (4%), although it formed 34% of the nodules in the greenhouse. Nodule occupancy by B. japonicum strains was found to be related to soybean maturity group. Strain USDA 110 formed 61, 71, 88, 88, and 98% of the nodules in the field on Clay (00), Clark (IV), D68-0099 (VI), N77-4262 (VI), and Hardee (VIII), respectively. Strain USDA 136b formed few nodules on Hardee, an Rj2 soybean variety incompatible with that strain, in both experiments. Nodule number and weight at the 1,050-m site were reduced to 41 and 27%, respectively, of those at the 320-m site because of the decrease in temperature. Nodule number increased with increasing maturity group number at each site; however, there was not a corresponding increase in nodule weight. Nitrogen accumulation decreased from 246 mg of N per plant at the lowest elevation site to 26 mg of N per plant at the highest elevation. While soil type and temperature had no effect on strain competition, temperature had a profound influence on nodule parameters and plant growth.  相似文献   

11.

Key message

Novel QTL conferring resistance to both the SDS and SCN was detected in two RIL populations. Dual resistant RILs could be used in breeding programs for developing resistant soybean cultivars.

Abstract

Soybean cultivars, susceptible to the fungus Fusarium virguliforme, which causes sudden death syndrome (SDS), and to the soybean cyst nematode (SCN) (Heterodera glycines), suffer yield losses valued over a billion dollars annually. Both pathogens may occur in the same production fields. Planting of cultivars genetically resistant to both pathogens is considered one of the most effective means to control the two pathogens. The objective of the study was to map quantitative trait loci (QTL) underlying SDS and SCN resistances. Two recombinant inbred line (RIL) populations were developed by crossing ‘A95-684043’, a high-yielding maturity group (MG) II line resistant to SCN, with ‘LS94-3207’ and ‘LS98-0582’ of MG IV, resistant to both F. virguliforme and SCN. Two hundred F7 derived recombinant inbred lines from each population AX19286 (A95-684043 × LS94-3207) and AX19287 (A95-684043 × LS98-0582) were screened for resistance to each pathogen under greenhouse conditions. Five hundred and eighty and 371 SNP markers were used for mapping resistance QTL in each population. In AX19286, one novel SCN resistance QTL was mapped to chromosome 8. In AX19287, one novel SDS resistance QTL was mapped to chromosome 17 and one novel SCN resistance QTL was mapped to chromosome 11. Previously identified additional SDS and SCN resistance QTL were also detected in the study. Lines possessing superior resistance to both pathogens were also identified and could be used as germplasm sources for breeding SDS- and SCN-resistant soybean cultivars.
  相似文献   

12.
The effects of different water regimes on the pathogenicity of Meloidogyne graminicola on six rice cultivars were determined in two soil types in three greenhouse experiments. Two water regimes, simulating continuous flooding and intermittent flooding, were used with five of the cultivars. All cultivars were susceptible to the nematode, but IR72 and IR74 were more tolerant than IR20 and IR29 under intermittent flooding. All were tolerant under continuous flooding. UPLRi-5 was grown under multiple water regimes: no flooding; continuous flooding; flooding starting at maximum tillering, panicle initiation, or booting stage; and flooding from sowing until maximum tillering or booting. In sandy loam soil, M. graminicola reduced stem and leaf dry weight, root dry weight, and grain weight under all water regimes. In clay loam soil, the nematode reduced root weight when the soil was not flooded or flooded only for a short time, from panicle initiation, or booting to maturity, and from sowing to maximum tillering. In clay loam soil, stem and leaf dry weight, as well as grain weight, were reduced by the nematode under all water regimes except continuous flooding or when the soil was flooded from sowing to booting stage. These results indicate that rice cultivar tolerance of M. graminicola varies with water regime and that yield losses due to M. graminicola may be prevented or minimized when the rice crop is flooded early and kept flooded until a late stage of development.  相似文献   

13.
Belkheir  Ali M.  Zhou  Xiaomin  Smith  Donald L. 《Plant and Soil》2001,229(1):41-46
The sub-tropical legume, soybean [Glycine max (L.) Merr.], has lower grain yields at low temperatures, mainly due to reduced nitrogen fixation. The isoflavone genistein has been identified as one of the major compounds in soybean seed and root extracts responsible for inducing the expression of the B. japonicum nod genes. A 2-year field study was conducted in 1997 and 1998 with 11 soybean cultivars recommended for Québec, and representing a range of yield potentials and maturity groups. The objective of this study was to assess the variability among soybean cultivar maturity groups in terms of response to genistein application under Canadian short season and cool-spring conditions. The experiments were organized in a randomized complete block design with three replications. The two genistein treatments included B. japonicum inoculant pre-incubated with 20 m genistein and B. japonicum inoculant only. The inoculants were applied into the furrow at the time of planting. The results of this study showed that genistein pre-incubated B. japonicum increased soybean grain yield and protein content over two years. In 1998, pod number per plant–1 and seed number plant–1 were also clearly increased. When 20 m genistein was applied in 1998, cultivars in the late maturity group had 28 and 70% more shoot and total protein content, respectively, than the early maturity groups with or without genistein, or the late maturity without genistein, in 1998. There was no interaction between genistein application and soybean cultivar in this study, indicating that both early and late maturing cultivars responded similarly to genistein pretreated inocula. Pre-incubation of B. japonicum with genistein can increase N2 fixation potential in short season areas. Key words: Soybean, cultivars, genistein, yield, and yield components  相似文献   

14.
The soybean cyst nematode Heterodera glycines (SCN) is of major economic importance and widely distributed throughout soybean production regions of the United States where different maturity groups with the same sources of SCN resistance are grown. The objective of this study was to assess SCN-resistant and -susceptible soybean yield responses in infested soils across the north-central region. In 1994 and 1995, eight SCN-resistant and eight SCN-susceptible public soybean cultivars representing maturity groups (MG) I to IV were planted in 63 fields, either infested or noninfested, in 10 states in the north-central United States. Soil samples were taken to determine initial SCN population density and race, and soil classification. Data were grouped for analysis by adaptation based on MG zones. Soybean yields were 658 to 3,840 kg/ha across the sites. Soybean cyst nematode-resistant cultivars yielded better at SCN-infested sites but lost this superiority to susceptible soybean cultivars at noninfested sites. Interactions were observed among initial SCN population density, cultivar, and location. This study showed that no region-wide predictive equations could be developed for yield loss based on initial nematode populations in the soil and that yield loss due to SCN in our region was greatly confounded by other stress factors, which included temperature and moisture extremes.  相似文献   

15.
The reproduction of a Wyoming population of Heterodera schachtii was determined for resistant trap crop radish (Raphanus sativus) and mustard (Sinapis alba) cultivars, and resistant and susceptible sugar beet (Beta vulgaris) cultivars in a greenhouse (21 °C/16 °C) and a growth chamber study (25 °C). Oil radish cultivars also were field tested in 2000 and 2001. In the greenhouse study, reproduction was suppressed similarly by the resistant sugar beet cultivar Nematop and all trap crop cultivars (P ≤ 0.05). In the growth chamber study, the radish cultivars were superior to most of the mustard cultivars in reducing nematode populations. All trap crops showed less reproduction than Nematop (P ≤ 0.05). In both studies, Nematop and all trap crops had lower Pf than susceptible sugar beet cultivars HH50 and HM9155 (P ≤ 0.05). In field studies, Rf values of radish cultivars decreased with increasing Pi of H. schachtii (r² = 0.59 in 2000 and r² = 0.26 in 2001). In 2000, trap crop radish cv. Colonel (Rf = 0.89) reduced nematode populations more than cv. Adagio (Rf = 4.67) and cv. Rimbo (Rf = 13.23) (P ≤ 0.05) when Pi was lower than 2.5 H. schachtii eggs and J2/cm³ soil. There were no differences in reproductive factors for radish cultivars in 2001 (P ≤ 0.05); Rf ranged from 0.23 for Adagio to 1.31 for Commodore for all Pi.  相似文献   

16.
Five soybean cultivars (Braxton, Gordon, Jeff, Bragg, and Wright) resistant to Meloidogyne incognita (Mi) and three susceptible cultivars (Coker 156, GaSoy 17, and Coker 237) were grown at two locations for four seasons in microplots with increasing initial soil population densities (Pi) of Mi. The resistant cultivars and Coker 156 yielded better than GaSoy 17 and Coker 237 at all Pi. Yield response was dependent on environmental conditions and at one location was stimulated on Braxton, Gordon, Jeff, and Bragg by low Pi. Although Mi reproduced well on all cultivars, the pattern of reproduction differed. Population densities of Mi leveled off after 90 days on GaSoy 17 and Coker 237 but were still increasing after 120 days on the resistant cultivars; population densities were lower on resistant than on the susceptible cultivars. The population density of Mi on Coker 156 after 120 days was intermediate between those on the other susceptible and on the resistant cultivars. Mi population densities followed the same pattern under varying environmental conditions.  相似文献   

17.
Suspension cultures from mature embryo-derived compact callus were initiated in seven meadow fescue (Festuca pratensis Huds.) cultivars. Four to six months after initiation, embryogenic suspension cultures with a moderate growth rate were established from three of them (cvs. Barmondo, Belimo and Leopard). These suspension cultures showed the capacity, maintained over six months, to regenerate green plants which could be grown to maturity under greenhouse conditions.Morphogenic suspension cultures from single genotypes of three F. pratensis cultivars (cvs. Barmondo, Belimo and Leopard) yielded large numbers of protoplasts, which upon culture in agarose beads using nurse cells formed microcalli with an overall plating efficiency in the range of 10-3 to 10-4. Mature plants were reproducibly regenerated and established in soil, from such protoplasts during a period of six months. The regeneration of fertile plants from protoplasts derived from suspension cultures of meadow fescue and its implications on gene transfer technology for this species are discussed.Abbreviations 2,4-D 2,4-dichlorophenoxy-acetic acid.  相似文献   

18.
19.

Key message

Four novel QTL and interactions among QTL were identified in this research, using as a parent line the most SDS-resistant genotype within soybean cultivars of the US early maturity groups.

Abstract

Soybean sudden death syndrome (SDS) reduces soybean yield in most of the growing areas of the world. The causal agent of SDS, soilborne fungus Fusarium virguliforme (Fv), releases phytotoxins taken up by the plant to produce chlorosis and necrosis in the leaves. Planting resistant cultivars is the most successful management practice to control the disease. The objective of this study was to identify quantitative trait loci (QTL) associated with the resistance response of MN1606SP to SDS. A mapping population of F 2:3 lines created by crossing the highly resistant cultivar ‘MN1606SP’ and the susceptible cultivar ‘Spencer’ was phenotyped in the greenhouse at three different planting times, each with three replications. Plants were artificially inoculated using SDS infested sorghum homogeneously mixed with the soil. Data were collected on three disease criteria, foliar disease incidence (DI), foliar leaf scorch disease severity (DS), and root rot severity. Disease index (DX) was calculated as DI × DS. Ten QTL were identified for the different disease assessment criteria, three for DI, four for DX, and three for root rot severity. Three QTL identified for root rot severity and one QTL for disease incidence are considered novel, since no previous reports related to these QTL are available. Among QTL, two interactions were detected between four different QTL. The interactions suggest that resistance to SDS is not only dependent on additive gene effects. The novel QTL and the interactions observed in this study will be useful to soybean breeders for improvement of SDS resistance in soybean germplasm.
  相似文献   

20.
Cowpea is an important crop for subsistence farmers in arid regions of Africa, Asia, and South America. Efforts to develop cultivars with improved productivity under drought conditions are constrained by lack of molecular markers associated with drought tolerance. Here, we report the mapping of 12 quantitative trait loci (QTL) associated with seedling drought tolerance and maturity in a cowpea recombinant inbred (RIL) population. One hundred and twenty-seven F8 RILs developed from a cross between IT93K503-1 and CB46 were screened with 62 EcoR1 and Mse1 primer combinations to generate 306 amplified fragment length polymorphisms for use in genetic linkage mapping. The same population was phenotyped for maintenance of stem greenness (stg) and recovery dry weight (rdw) after drought stress in six greenhouse experiments. In field experiments conducted over 3 years, visual ratings and dry weights were used to phenotype drought stress-induced premature senescence in the RIL population. Kruskall–Wallis and multiple-QTL model mapping analysis were used to identify QTL associated with drought response phenotypes. Observed QTL were highly reproducible between stg and rdw under greenhouse conditions. Field studies confirmed all ten drought-response QTL observed under greenhouse conditions. Regions harboring drought-related QTL were observed on linkage groups 1, 2, 3, 5, 6, 7, 9, and 10 accounting for between 4.7 and 24.2% of the phenotypic variance (R 2). Further, two QTL for maturity (R 2 = 14.4–28.9% and R 2 = 11.7–25.2%) mapped on linkage groups 7 and 8 separately from drought-related QTL. These results provide a platform for identification of genetic determinants of seedling drought tolerance in cowpea. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号