首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The vertical migration of N. carpocapsae infective juveniles applied to the soil surface or introduced 14 cm below the soil surface was studied in four different soil types (pure silica sand, coarse sandy loam, silty clay loam, and clay). The percentage of juveniles able to migrate and infect wax moth pupae placed in the soil decreased as the percentage of clay and silt increased. Most nematodes placed on the soil surface remained within 2 cm of the surface, but some penetrated to a depth of 10 cm in pure silica sand and coarse sandy loam to infect pupae. Some pupae at the same depth were also infected with nematodes in silty clay loam soil. In pure silica sand and coarse sandy loam, nematodes introduced 14 cm below the soil surface were able to infect wax moth pupae located between 4 and 24 cm. Movement was least in clay soil and limited in silty clay loam. Nematodes showed a tendency to disperse upwards from the point of application. In all cases the number of migrating nematodes was greatest when wax moth pupae were present.  相似文献   

2.
3.
4.
Laboratory tests determined the lateral and vertical dispersal patterns of Neoaplectana carpocapsae in sand. In the vertical tests, placement of infective juveniles 15 cm below the sand''s surface resulted in the majority (77%) being recovered above the point of placement after 48 h. Placement of the nematodes on the sand''s surface resulted in the majority (90.4%) remaining within 1 cm of the sand''s surface. Placement of nematodes at depths of 2.5 cm and 5.0 cm below the sand''s surface also resulted in little nematode dispersal. However, vertical hioassay tests showed that juvenile nematodes placed on the sand''s surface dispersed 12 cm down to infect 67% of the Galleria mellonella pupae placed at the depth. Conversely, when nematodes were placed 11 cm below the insect pupae no infection was observed, but 53% infection occurred when nematodes were 7 cm below the site of the insect pupae. In lateral dispersal, 87% of the nematodes rentained within 2 cm of the placement site, although 0.5% were recovered at 12-14 cm away from the point of placement. Lateral bioassay tests indicated that the nematodes were capable of infecting 90, 35, and 5% of the G. mellonella pupae at 7 cm, 10 cm, and 14 cm from the point of placement, respectively.  相似文献   

5.
The effect of soil moisture on the distribution of Steinernema riobrave in a sand column was determined. Larvae of Pectinophora gossypiella were used to detect S. riobrave infective juveniles (IJ) in each 2.5-cm section of 30-cm-long soil columns. Soil moisture was determined for each section and related to the numbers of nematodes recovered from infected insect baits. Infective juveniles of S. riobrave applied on the sand column surface showed some degree of positive geotaxis. IJ in soil columns with a consistent moisture gradient grouped in the upper 12.7 cm within a water potential range of ¯40 to ¯0.0055 MPa (2% to 14% moisture). Nematodes in sand columns that were gradually dehydrating moved down the soil column, aggregating on the 28th day between 15-23 cm in depth. Nematode redistribution over time allowed IJ to remain within a water potential range of ¯0.1 to ¯0.012 MPa (5.2% to 9.5% moisture).  相似文献   

6.
The neoaplectanids are among the most studied of all entomogenous nematodes. Because these nematodes kill their insect hosts, they are regarded as having excellent potential as biological control agents. While the host specificity of most entontogenous nematodes tends to limit their potential usefulness, the broad host range and high virulence of neoaplectanids make them attractive candidates for industrial development. Also, recent development of economical mass rearing procedures appears to make production on a commercial basis feasible. Infective stages may be stored for years trader various laboratory conditions. Although entomogenous nematodes, as parasites, are exempt from govermnent registration requirements, the mutualistic association of neoaplectanid nematodes with a bacterium will likely necessitate a detailed safety evaluation. Studies conducted to date indicate a lack of pathogenicity to mammals. Field trial success has been limited by the intolerance of infective stages to mffavorable environmental conditions, particularly low moisture. Applications against pests on exposed plant foliage have been especially disappointing. More encouraging anti consistent results have been obtained in more favorable environments, including soil and aquatic habitats, but the most promising treatment sites ntay be cryptic habitats where infective stages are shehered from environmental extremes. Cryptic habitats also exploit the ability of neoaplectanids to actively seek out hosts in recessed places where conventional insecticide applications are intpractical.  相似文献   

7.
The dynamics of Steinernema feltiae strain DD-136 in soils with different fauna was investigated to determine the best method for the biological control of soil insects. Infective juveniles (J3) were applied to field plots with and without 1,3-D (Telone II) fumigation. Recovery of J3 and changes in native nematode fauna were monitored until the applied J3 were no longer recovered by Baermann funnel (BF). Recovery of J3 by BF or by a two-step extraction procedure from steam-sterilized or nonsterilized sandy or silty soil with different fauna was investigated. More DD-136 J3 were recovered from the 1,3-D treated soil than from nontreated soil, while native nematodes in the treated soil fluctuated more with the addition of DD-136 than those in nontreated soil. The J3 persisted longer in silty than in sandy soils. The inundative soil application of DD-136 increased native rhabditids and decreased plant-parasitic nematodes. DD-136 in chemically treated soil not only effectively attacked the invading soil insect pests but also suppressed the recovery of plant nematodes.  相似文献   

8.
This paper contains taxonomic keys for the identification of species of the genera Steinernema and Heterorhabditis. Morphometrics of certain life stages are presented in data tables so that the morphometrics of species identified using the keys can be checked in the tables. Additionally, SEM photographs and diagnoses of the families and genera of Steinernematidae and Heterorhabditidae are presented.  相似文献   

9.
Three strains of Steinernema feltiae Filipjev (All, Mexican, and Breton strains) and one of Heterorhabditis heliothidis (Khan, Brooks, and Hirschmann) were evaluated for their potential to control Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say), larvae and pupae in the soil. In laboratory studies, H. heliothidis and S. feltiae (Mexican strain) produced the highest mortality (6 days posttreatment) of CPB when applied to the surface of a soil column containing mature CPB larvae 5 cm below. Mortality ranged from 80 to 90% at rates of 79-158 nematodes/cm². Similar results were seen in a field microplot study with all four nematodes; S. feltiae (Mexican strain) and H. heliothidis were most effective. Adult CPB emergence was reduced 86.5-100% after application of 31-93 H. heliothidis/cm² and 88.4-100% with 93-155 S. feltiae (Mexican strain)/cm². The All strain of S. feltiae was moderately effective (ca. 80% reduction at 93-155 nematodes/cm²), while the Breton strain was ineffective (< 40% reduction at 155 nematodes/cm²). In small plots of potatoes enclosed in field cages, application of H. heliothidis and S. feltiae (Mexican strain) at rates of 93-155 nematodes/cm² before larval CPB burial in the soil resulted in 66-77% reduction in adult CPB emergence. Soil applications of these nematodes show potential for biological control of CPB.  相似文献   

10.
Some studies suggest that entomopathogenic nematodes (EPN) affect plant-parasitic nematode populations. Here, the effects of live and dead IJ of Heterorhabditis bacteriophora JPM4, H. baujardi LPP7, Steinernema feltiae SN and S. carpocapsae All were evaluated against eggs and J2 of the plant-parasitic nematode Meloidogyne mayaguensis. According to treatment, 100 IJ were applied with 350 eggs, 350 J2 or 175 eggs + 175 J2 to tomato plants. Bioassays were conducted in March to May and repeated in September to November 2005. Both experiments lasted 9 weeks, and the variable evaluated was number of galls per plant. When eggs were used for infections in the first trial, plants exhibited lower gall number compared to control when live and dead H. baujardi IJ and live S. feltiae IJ were added (9.7, 4.5, 7.3 and 85.7 galls, respectively). In the second trial, live S. feltiae and S. carpocapasae IJ influenced gall formation compared to control (14.33, 14.57 and 168.02 galls, respectively). When J2 were used for infections, plants with live H. baujardi IJ presented less galls when compared to control in both trials (38.3 and 355.7 galls in the first trial and 145.2 and 326.2 in the second one, respectively). Infection with a mixture of J2 and eggs resulted in fewer galls than when live S. feltiae IJ were present in both trials, compared to control (38.3 and 44.2 galls vs. 275.3 and 192.2 galls, respectively). We conclude that H. baujardi and S. feltiae apparently may be inhibiting egg hatching and J2 infection.  相似文献   

11.
Exposure to NaC1, KCI, and CaCl₂ affected the entomopathogenic nematodes Heterorhabditis bacteriophora and Steinernema glaseri differently. Survival, virulence, and penetration efficiency of S. glaseri were not affected by these salts. At high concentrations, however, all three salts inhibited its ability to move through a soil column and locate and infect a susceptible host. Calcium chloride and KCl had no effect on H. bacteriophora survival, penetration efficiency, or movement through a soil column, but moderate concentrations of these salts enhanced H. bacteriophora virulence. NaCl, however, adversely affected each of these parameters at high salinities (>16 dS/m). Salt effects on S. glaseri are attributed solely to interference with nematode host-finding ability, whereas the NaCl effects on H. bacteriophora are attributed to its toxicity and possibly to interference with host-finding behavior.  相似文献   

12.
A survey was done in the summer months along the Alaska Highway, in other parts of British Columbia, in northern Alberta, and in the Yukon Territory for steinernematid and heterorhabditid nematodes occurring in the top 10 cm of soil. Steinernema feltiae and Steinernema spp. were found at 18 and Heterorhabditis megidis at 7 sites of 125 sampled. Most nematodes were found where visible insect infestation occurred and where human influence on the habitat was substantial (e.g., agricultural, forested and bush-hedgerow habitats); none was found in grassland or virgin forests. Heterorhabditis megidis occurred in only the southern, warmer, drier region of British Columbia. In the laboratory some steinernematid isolates and H. megidis killed Galleria mellonella larvae at 13 and 22 C, whereas some isolates of Steinernema killed the larvae at only 13 C. Steinernema spp. from three high altitude sites with low, average July temperatures (13-14 C) are cold-active in that they produced infective juveniles at 13 C and killed G. mellonella at 6 C.  相似文献   

13.
14.
Survival of infective juveniles of Steinernema carpocapsae and Steinernema glaseri gradually declined during 16 weeks of observation as the tested soil pH decreased from pH 8 to pH 4. Survival of both species of Steinernema dropped sharply after 1 week at pH 10. Survival or S. carpocapsae and S. glaseri was similar at pH 4, 6, and 8 during the first 4 weeks, but S. carpocapsae survival was significantly greater than S. glaseri at pH 10 through 16 weeks. Steinernema carpocapsae and S. glaseri that had been stored at pH 4, 6, and 8 for 16 weeks, and at pH 10 for 1 or more weeks were not infective to Galleria mellonella larvae. Steinernema carpocapsae survival was significantly greater than that of S. glaseri at oxygen:nitrogen ratios of 1:99, 5:95, and 10:90 during the first 2 weeks, and survival of both nematode species declined sharply to less than 20% after 4 weeks. Survival of both nematode species significantly decreased after 8 weeks as the tested oxygen concentrations decreased from 20 to 1%, and no nematode survival was recorded after 16 weeks. Steinernema carpocapsae pathogenicity was significantly greater than that of S. glaseri during the first 2 weeks. No nematode pathogenicity was recorded at oxygen concentrations of 1, 5, and 10% after 2 weeks and at 20% after 16 weeks.  相似文献   

15.
The vertical migration of M. incognita juveniles introduced at 20 cm from the roots was studied in five natural soils, 100% silica sand, 95% silica sand with 5% clay, 90% silica sand with 10% clay, and 95% silica sand with 5% clay as a concentrated layer. In natural soils the percentage of juveniles capable of migrating 20 cm and penetrating the roots decreased when the percentage of clay and silt increased. No migration occurred in silica sand without clay particles; when 5 or 10% of clay were mixed to silica sand, 34 and 26%, respectively, of the juveniles were able to migrate 20 cm. Clay separated from silica sand in which tomatoes were grown was attractive for juveniles. It is suggested that clay particles aid in the migration of root-knot juveniles over long distances to plant roots by absorbing and holding root exudates or bacterial by-products which form a concentration gradient enabling nematodes to locate roots.  相似文献   

16.
The insect-parasitic nematode, Steinernema feltiae Filipjev strain 42, was reared in liquid culture along with its bacterial symbiont, Xenorhabdus nematophilus Thomas &Poinar. First-stage juveniles developed into reproducing adults in a maintenance salts medium containing resuspended Xenorhabdus cells and the yeast Kluyveromyces marxianus (Hansen) van der Walt or cholesterol. Cultures with media depths greater than 4 mm required aeration. Nematode populations increased as bacterial density increased. An optimal culture system was obtained when the bacteria and nematodes developed in a semidefined medium containing tryptic soy, yeast extract, and cholesterol and were incubated on a rotary shaker at 25 ± 1 C. Under these conditions, up to 86% of the final population were infective juveniles.  相似文献   

17.
The Diaprepes root weevil, Diaprepes abbreviatus, is a pest of vegetables, ornamental plants, sugarcane, and citrus in Florida and the Caribbean. The entomopathogenic nematode, Steinernema riobrave, can reduce larval populations of D. abbreviatus substantially. Efficacy of entomopathogenic nematodes, however, may be affected by culture method and formulation. Using D. abbreviatus as the host, we compared the efficacy of two commercial S. riobrave formulations, a liquid and a waterdispersible granule (WDG), with each other and with in vivo produced S. riobrave. Nematodes in the commercial formulations were produced in vitro through liquid fermentation; the in vivo nematodes were cultured in Galleria mellonella and applied in aqueous suspension. Laboratory experiments measured nematode virulence in plastic cups containing soil and seventh-eighth instar D. abbreviatus. One laboratory experiment was conducted using only fresh nematodes (less than 5 days old); another experiment included WDG nematodes that were stored for 25 days at 10 °C. Two field experiments were conducted in which nematodes were applied either to potted citrus (containing D. abbreviatus larvae) placed beneath mature citrus trees or to soil directly beneath the tree. In the latter experiment, efficacy was determined by measuring mortality of caged D. abbreviatus larvae that were buried beneath the soil surface prior to application. Mortality of D. abbreviatus treated with nematodes ranged from 80-98% and 50-75% in laboratory and field experiments, respectively. In all experiments, we did not detect any significant effects of culture method or formulation.  相似文献   

18.
The effects of soil type and initial inoculum density (Pi) on the reproductive and damage potentials of Meloidogyne incognita and Rotylenchulus reniformis on cotton were evaluated in microplot experiments from 1991 to 1993. The equilibrium nematode population density for R. reniformis on cotton was much greater than that of M. incognita, indicating that cotton is a better host for R. reniformis than M. incognita. Reproduction of M. incognita was greater in coarse-textured soils than in fine-textured soils, whereas R. reniformis reproduction was greatest in a Portsmouth loamy sand with intermediate percentages of clay plus silt. Population densities of M. incognita were inversely related to the percentage of silt and clay, but R. reniformis was favored by moderate levels of clay plus silt (ca. 28%). Both M. incognita races 3 and 4 and R. reniformis effected suppression of seed-cotton yield in all soil types evaluated. Cotton-yield suppression was greatest in response to R. reniformis at high Pi. Cotton maturity, measured as percentage of open bolls at different dates, was affected by the presence of nematodes in all 3 years.  相似文献   

19.
20.
During a survey of entomopathogenic nematodes (EPNs) in the eastern Black Sea region of Turkey in 2009–2012, a steinernematid species was recorded and isolated using the Galleria-baiting method. The isolate was identified as Steinernema kraussei based on its morphological and molecular properties. The analysis of the ITS rDNA sequence placed the Turkish population of S. kraussei in the “feltiae-kraussei” group in the clade that contains different isolates of the species. This is the first record of S. kraussei from Turkey. The efficacy of S. kraussei was tested on Agrotis segetum (Lepidoptera: Noctuidea) larvae at different densities (100, 300, and 500 infective juveniles (IJs) g−1 dry sand ) in laboratory conditions at 25 °C. The highest mortality (98%) was obtained with 500 IJs g−1 dry sand within 7 d after inoculation. Our results indicate that the new isolate is a highly promising biological control agent against A. segetum, one of the most serious soil pests of agricultural area and fruits worldwide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号