首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The development of Meloidogyne platani on sycamore was followed for 40 days (22-28 C). Juveniles penetrated the feeder roots behind the root cap and invaded the vascular cylinder within 3 days after inoculation. All subsequent development of the nematodes and host effects occurred only within the stele. The second juvenile molt and sex differentiation occurred by the 17th day. Young females were observed by the 26th day. Eggs were observed inside the roots by the 35th day and were exposed to the surface of galls by the 40th day. In pathogenicity studies, a significant negative correlation was shown to exist between fresh shoot and root weights and inoculum density. Besides sycamore, white ash was the only hardwood species tested to become infected. Of the herbacious plants tested, tobacco was heavily galled, tomato and watermelon moderately galled, and pepper only slightly galled. Egg production was moderate on tobacco, slight on tomato and watermelon, and absent on pepper.  相似文献   

2.
The effect of soil temperature on the expression of resistance in several common bean lines carrying resistance to root-knot nematodes (Meloidogyne spp.) was studied under controlled temperatures in temperature tank and growth chamber conditions. Resistance to M. javanica and M. incognita race 1 in bean lines A315, A328, A445, G1805, and G2618 was stable at 24-30 C. However, there was a significant increase in reproduction of M. javanica on A315, A328, and A445 when temperature was increased from 26 to 30 C. This increase did not reflect a change from a resistant to a susceptible reaction or classification. Resistance in A315 is derived from G1805, whereas resistance in A328 and A445 is derived from G2618. Alabama No. 1, PI 165426, and PI 165435, with resistance to M. incognita race 2, were heat stressed at temperatures above 27 C. Resistance to M. incognita race 2 in Alabama No. 1 and PI 165435 was lost at 30 C, but PI 165426 supported low reproduction of M. incognita race 2 at all temperatures. Poor root development at 30 C may have been responsible, in part, for the poor development of M. incognita race 2 on PI 165426.  相似文献   

3.
Meloidogyne incognita race 1, M. javanica, M. arenaria race 1, M. hapla, and an undescribed Meloidogyne sp. were analyzed by comparing isozyme phenotypes of esterase, malate dehydrogenase, phosphoglucomutase, isocitrate dehydrogenase, and α-glycerophosphate dehydrogenase. Isozyme phenotypes were obtained from single mature females by isoelectric focusing electrophoresis. Of these five isozymes, only esterase and phosphoglucomutase could be used to separate all five Meloidogyne spp.; however, the single esterase electromorphs were similar for M. incognita and M. hapla. Yet when both nematodes were run on the same gel, differences in their esterase phenotypes were detectable. Isozyme phenotypes from the other three isozymes revealed a great deal of similarity among M. incognita, M. javanica, M. arenaria, and the undescribed Meloidogyne sp.  相似文献   

4.
Nonspecific esterases and malate dehydrogenases of 1-5 females from 40 root-knot nematode populations from Portugal were analyzed by electrophoresis in 0.4-mm-thick polyacrylamide gels. Fourteen major bands of esterase activity were detected, corresponding to 10 distinct phenotypes, Meloidogyne javanica and M. hapla had distinct species-specific phenotypes. Two phenotypes occurred in M. arenaria. The most variability was found among M. incognita populations. Of the remaining two phenotypes, one was associated with M. hispanica and the other belonged to a new species. Three malate dehydrogenase phenotypes were discerned on the basis of particular combinations of the eight main bands of activity found. As previously found, esterases were more useful than malate dehydrogenases in identification of the major Meloidogyne species. The host plant had no effect on the nematode esterase or malate dehydrogenase phenotypes.  相似文献   

5.
Selection of detectable numbers of Mi-virulent root-knot nematodes has necessitated a greater understanding of nematode responses to new sources of resistance. During the course of this research, we compared the reproduction of four geographically distinct Mi-virulent root-knot nematode isolates on three resistant accessions of Lycopersicon peruvianum. Each accession carried a different resistant gene, Mi-3, Mi-7, or Mi-8. All nematode isolates were verified as Meloidogyne incognita using diagnostic markers in the mitochondrial genome of the nematode. Reproduction of Mi-virulent isolates W1, 133 and HM, measured as eggs per g of root, was greatest on the Mi-7 carrying accession and least on the Mi-8 carrying accession. In general, Mi-3 behaved similar to the Mi-8 carrying accession. Reproduction of the four nematode isolates was also compared on both Mi and non-Mi-carrying L. esculentum cultivars and a susceptible L. peruvianum accession. Resistance mediated by Mi in L. esculentum still impacted the Mi-virulent nematodes with fewer eggs per g of root on the resistant cultivar (P ≤ 0.05). Preliminary histological studies suggests that Mi-8 resistance is mediated by a hypersensitive response, similar to Mi.  相似文献   

6.
Ninety-six isolates of Meloidogyne species collected from banana fields from Martinique, Guadeloupe, and French Guiana, were examined using esterase (Est) and malate dehydrogenase (Mdh) phenotypes. Adult females identified as M. arenaria, M. incognita, M. javanica, M. cruciani, M. hispanica, and Meloidogyne sp. showed species-specific phenotypes only for the esterase enzymes. Intraspecific variability among isolates of M. arenaria, M. incognita, and M. javanica was detected using Est and Mdh. Perineal patterns were used as a complementary tool together with enzyme characterization and were essential for checking the morphological consistency of the identification. The major species of M. arenaria and M. incognita were detected at 61.9% and 34.3% of the total number of isolates, respectively, and the other minor species at 3.8%. The mixed Meloidogyne species were detected in 45.1% of the samples. Genetic analysis was conducted using RAPD markers, which alone or in combination provided reliable polymorphisms both between and within species. RAPD analysis of the data resulted in clustering of species and isolates congruent with esterase phenotype characterization. The intraspecific variability in M. incognita and in M. arenaria represented 14.9% and 61.6% of the amplified polymorphic fragments, respectively. This high level of variation in M. arenaria isolates may indicate multiple origins for populations classified as M. arenaria or more than one species inside the same group, but more detailed morphological and DNA studies will be necessary to test this hypothesis.  相似文献   

7.
The effects of Meloidogyne incognita or M. javanica at five initial inoculum levels of 20, 100, 200, 1,000, and 2,000 eggs and infective juveniles per seedling on ''Floradade,'' ''Nemarex,'' ''Patriot,'' and ''PI 129149-2(sib)-5'' tomatoes maintained at 25 or 32.5 C were studied. The number of egg masses on roots of the susceptible cultivar Floradade was similar for both species of root-knot nematodes at either 2.5 or 32.5 C soil temperatures. At 25 C, very low numbers of egg masses were produced by both species of root-knot nematodes on Nematex, Patriot, and Lycopersicon peruvianum PI 129149-2(sib)-5. At 32.5 C, the best inoculum level for assessing resistance in these tomato genotypes was 200 eggs and infective juveniles per seedling. With 28 days of incubation, this temperature and inoculum level produced quantitative differences in resistance for both species of Meloidogyne.  相似文献   

8.
Fluorescent conjugates of the lectins soybean agglutinin (SBA), Concanavalin A (Con A), wheat germ agglutinin (WGA), Lotus tetragonolobus agglutinin (LOT), and Limulus polyphemus agglutinin (LPA) bound primarily to amphidial openings and amphidial secretions of viable, preinfective second-stage juveniles (J2) of Meloidogyne incognita races 1 and 3 (Mil, Mi3) and M. javanica (Mj). No substantial difference in fluorescent lectin binding was observed among the populations examined. Binding of only LOT and LPA were inhibited in the presence of 0.1 M competitive sugar. Structural differences in amphidial carbohydrate complexes among populations of Mi 1, Mi3, and Mj were revealed by glycohydrolase treatment of preinfective J2 and subsequent labeling with fluorescent lectins. A quantitative microfiltration enzyme-linked lectin assay revealed previously undetected differences in lectin binding to nonglycohydrolase-treated J2. Freinfective J2 of Mj bound the greatest amount of SBA, LOT, and WGA, whereas J2 of Mil bound the most LPA.  相似文献   

9.
Use of resistant Phaseolus vulgaris germplasm has a potential role in limiting damaging effects of Meloidogyne spp. on bean production. Effects of two genetic resistance systems in common bean germptasm on penetration and development of Meloidogyne spp. were studied under growth room conditions at 22°C to 25°C. Nemasnap (gene system 1) and G1805 (gene system 2) were inoculated with second-stage juveniles (J2) of M. incognita race 2 and M. arenaria race 1, respectively; Black Valentine was used as the susceptible control. Up to 7 days after inoculation, there were no differences in numbers of M. incognita J2 penetrating roots of Black Valentine and Nemasnap; subsequently, more nematodes were present in Black Valentine roots (P < 0.05). More nematodes reached advanced stages of development in Black Valentine than in Nemasnap roots (P < 0.05). Total numbers of M. arenaria were greater in Black Valentine than in G 1805 roots from 14 days after inoculation (P < 0.05). Advanced stages of development occurred earlier and in greater numbers in Black Valentine plants than in G1805 plants. In these studies, resistance to M. incognita race 2 and M. arenaria race 1 in bean germplasm, which contain gene system 1 and gene system 2, respectively, was expressed by delayed nematode development rather than by differential penetration compared with susceptible plants.  相似文献   

10.
Nucleic acid hybridization among root-knot nematode mitochondrial DNAs can be used to identify several Meloidogyne species. Research was initiated to optimize mitochondrial DNA-based molecular diagnostics for the demanding environments likely to be encountered in field isolates. DNA hybridization using reconstituted DNA-soil mixtures revealed a loss of assay sensitivity ranging from 34% to 92% with four agronomic soils tested. This problem was alleviated by the addition of exogenously added DNA. Variation in nematode egg lysis procedures also affected hybridization efficiency, with NaOC1 treatment most effective at disrupting Meloidogyne eggs. These optimized conditions permit detection of mtDNA released from one to five Meloidogyne eggs using standard nucleic acid hybridization procedures.  相似文献   

11.
Polymerase chain reaction (PCR) was used to amplify a specific 1.8-kb sequence of mitochondrial DNA from single juveniles and eggs from 17 populations of Meloidogyne incognita, M. hapla, M. javanica, and M. arenaria. Approximately 2 μg amplified product were produced per reaction. Restriction digestion of the amplified product with HinfI permitted discrimination of clonal lineages of the four species. Meloidogyne javanica, however, could not be separated from M. hapla by the enzymes used in these experiments. Various amplification conditions and nematode lysis procedures were examined in order to optimize the speed and quality of identifications.  相似文献   

12.
13.
Restriction fragments from purified mitochondrial DNA can be readily detected following rapid end-labeling with [α-³²]nucleoside triphosphates and separation by gel electrophoresis. Mitochondrial DNA from 12 populations of Meloidogyne species was digested with 12 restriction enzymes producing more than 60 restriction fragments for each species. The mitochondrial genome of M. arenaria is the most genetically distinct of the four species compared. M. arenaria shows approximately 2.1-3.1% nucleotide sequence divergence from the mitochondrial genomes of M. javanica, M. incognita, and M. hapla. Among the latter three species, interspecific estimates of sequence divergence range from 0.7 to 2.3%. Relatively high intraspecific variation in mitochondrial restriction fragment patterns was observed in M. hapla. Intraspecific variation in M. incognita resulted in sequence divergence estimates of 0.5-1.0%. Such polymorphisms can serve as genetic markers for discerning mitochondrial DNA genotypes in nematode populations in the same way that allozymes have been used to discern nuclear DNA genotypes.  相似文献   

14.
Pasteuria penetrans has .been identified as an important biological control agent of root-knot nematodes. In this study the use of tally thresholds was evaluated for estimating P. penetrans endospore attachment to second-stage juveniles (J2) of Meloidogyne spp. A tally threshold (T) is defined as the maximum number of individuals in a sample unit that may be treated as absent based on binomial sampling. Three different data sets that originated from centrifugal bioassay, incubation bioassay, and field experiments were investigated. The data sets each contained 70, 33, and 111 estimates of the mean number of endospores attached per J2 (m), respectively. Empirical relationships between m and proportions of J2 with ≤T endospores attached (PT) were developed using parameters from the linear regression of ln(m) on PT (0 < PT < 1): ln(m) = a + b PT, T was set to 0, 1, 2, 3, 4, 5, 8, and 10 endospores/J2. The results indicated that the variances of linear equations tended to decrease with increasing T values for all three data sets. T values of 0, 1, 8, and 10 endospores/J2 for centrifugal bioassay and incubation bioassay, and of 0, 1, 2, and 3 endospores/J2 for field experiments were associated with an r² of >= 0.8. These T values were robust for estimating m from PT, reducing the variability as well as the time and effort spent in estimating the mean number of endospores attached per J2.  相似文献   

15.
Algal extracts were ineffective against Meloidogyne spp., Panagrellus redivivus, and Neoaplectana carpocapsae at 1.0% aqueous concentrations, with the exception of Spatoglossum schroederi. S. schroederi killed Meloidogyne incognita, M. javanica, M. acrita, and Hoplolaimus galeatus at concentrations of 1.0, 0.75, and 0.50%. Extracts from S. schroederi at a concentration of 1.0% were ineffective against Hirschmanniella caudacrena and Belonolaimus longicaudatus. Spatoglossum schroederi, Botryocladia occidentalis, and Bryothamnion triquestrum when used as soil amendments at 0.5-1.0% concentrations (by weight) produced significant reduction of root gall development in tomato plants infected with M. incognita. Tomato plant growth was significantly improved by these algae, as well as by Caulerpa prolifera. Soil amendments of S. schroederi at concentrations of 0.5 and 1.0% significantly reduced root galling of tomato infected with M. incognita, M. arenaria, and M. javanica. Tomatoes grown in algal-soil mixture produced significantly heavier shoots and roots than plants raised in autoclaved soil. No significant differences in root-knot indices, nor in fresh and dry weights of tomato, were noted between the two concentrations of algal-soil mixture.  相似文献   

16.
The host-parasite relationships of asparagus and Meloidogyne spp. were examined under greenhouse and microplot conditions. Meloidogyne species and races differed greatly in their ability to reproduce on asparagus seedlings. Meloidogyne hapla generally failed to reproduce, and M. javanica, M. arenaria race 1, and M. incognita race 3 reproduced poorly, with a reproduction factor (Rf = final population/initial population) usually < 1.0. Only M. arenaria race 2 and M. incognita races 1 and 4 reproduced consistently on all asparagus cultivars tested (Rf typically 1-11). No effect of M. incognita race 4 on host growth was detected. Meloidogyne arenaria race 2 and M. incognita race 1 had slight negative effects (5-10%) on plant and root growth.  相似文献   

17.
Thirty populations of Meloidogyne of diverse geographic origin representing 10 nominal species and various reproductive, cytological, and physiological forms known to exist in the genus were examined to determine their enzymatic relationships. The 184 bands resolved in the study of 27 enzymes were considered as independent characters. Pair-wise comparisons of populations were performed in all possible combinations to estimate the enzymatic distances (ED) and coefficients of similarity (S). A phylogenetic tree was constructed. The apomictic species M. arenaria, M. microcephala, M. javanica, and M. incognita shared a common lineage. M. arenaria was highly polytypic, whereas conspecific populations of M. javanica and M. incognita were largely monomorphic. The mitotic and meiotic forms of M. hapla were very similar (S = 0.93), suggesting that the apomictic race B evolved only recently from the meiotic race A. The five remaining meiotic species (M. chitwoodi, M. graminicola, M. graminis, M. microtyla, and M. naasi - each represented by a single population) were not closely related to each other or to the mitotic species.  相似文献   

18.
Genetic variation within nuclear and mitochondrial DNA of Meloidogyne species and host races has been evaluated for the development of root-knot nematode molecular diagnostics. This review summarizes the distinctive features of several useful DNA-based assays for plant-parasitic nematodes, focusing upon the direct application of these procedures for Meloidogyne detection, identification, and systematics.  相似文献   

19.
Meloidogyne carolinensis n. sp. is described from cultivated highbush blueberry (cultivars derived from hybrids of Vaccinium corymbosum L. and V. lamarckii Camp) in North Carolina. The perineal pattern of the female has a large cuticular ridge that surrounds the perivulval area, and the excretory pore is near the level of the base of the stylet. The stylet is 15.9 μm long and the knobs gradually merge with the shaft. The head shape and stylet morphology of the male are quite variable. The typical head and four variants, as well as the typical stylet and two variants, are described. The labial disc, medial lips, and lateral lips of second-stage juveniles are fused and in the same contour. The head region is not annulated. Mean juvenile length is 463.7 μm, stylet length is 11.9 μm, and tail length is 42.5 μm.  相似文献   

20.
The yield response of Florunner peanut to different initial population (Pi) densities of Meloidogyne arenaria, M. javanica, and an undescribed Meloidogyne species (isolate 93-13a) was determined in microplots in 1995 and 1996. Seven Pi''s (0, 0.5, 1, 5, 10, 50, and 100 eggs and J2/500 cm³ soil) were used for each Meloidogyne species in both years. The three species reproduced abundantly on Florunner in both years. In 1995, mean reproduction differed among the three species; mean Rf values were 10,253 for isolate 93-13, 4,256 for M. arenaria, and 513 for M. javanica. In 1996, the reproduction of M. arenaria (mean Rf = 7,820) and isolate 93-13a (mean Rf = 7,506) were similar, and both had greater reproduction on peanut than did M. javanica (mean Rf = 2,325). All three nematode species caused root and pod galling, and a positive relationship was observed between Pi and the percentage of pods galled. Meloidogyne arenaria caused a higher percentage of pod galling than did M. javanica or isolate 93-13a. A negative linear relationship between log₁₀ (Pi + 1) and pod yield was observed for all three nematode species each year. The yield response slopes were similar except for that of M. javanica, which was less negative than that of isolate 93-13a in 1995, and less negative than that of M. arenaria and isolate 93-13a in 1996.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号