首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microplots 80 × 100 cm, infested with varying initial population densities (Pi) of Meloidogyne incognita or M. hapla, were planted to tomato at two locations. Experiments were conducted in a sandy loam soil at Fletcher, N. C. (mountains) where the mean temperature for May to September is ca 20.7 C, and in a loamy saml at Clayton, N. C. (coastal plain) where the mean temperature for May to Septemher is ca 24.8 C. In these experimentally infested plots, M. incognita and M. hapla caused maximunt yield losses of 20-30%, at lhe mountain site with Pi of 0-12,500 eggs and larvae/500 cm³ of soil. In the coaslal plain, M. incognita suppressed yields up to 85%, and M. hapla suppressed yields up to 50% in comparison with the noninfested control. A part of the high losses at this site apparently was due to M. incognita predisposing tomato to the early blight fungus. In a second experintent, in which a nematicide was used to obtain a range of Pis (with Pi as high as 25,000/50 cm³ of soil) at Fletcher, losses due to M. incognita were as great as 50%, but similar densities of M. hapla suppressed yields by only 10-25%. Approximate threshold densities for both species ranged from 500 to 1,000 larvae and eggs (higher for surviving larvae) for the mountain site, whereas nutnbers as low as 20 larvae/500 cm³ of soil of either species caused signiticant damage in the coastal plain. Chemical soil treatments proved useful in obtaining various initial population densities; however, problems were encountered in measuring effective inoculum after such treatments, especially in the heavier soil.  相似文献   

2.
A major constraint facing sweet pepper production is infestation by nematodes leading to reduced yields. Field studies were conducted during the 2012 cropping season at the Experimental Farms of the University for Development Studies, Nyankpala, Northern region, Ghana, to determine efficacy of various levels of moringa leaf powder for the control of root-knot nematodes in sweet pepper (Capsicum annuum L.) in the savanna ecology of Ghana. Treatments consisted of three levels of moringa leaf powder (40, 60 and 80?g/L) per plot and 0?g/L (control). The experiment was laid out in a randomised complete block design with each treatment replicated four times. The infestations of root-knot nematodes were significantly lower in the moringa leaf powder-treated plots than the control. Although significant differences were not observed in all the parameters evaluated among the moringa leaf powder treatments, sweet pepper plants treated with 80?g/L of moringa leaf powder per plot recorded the highest mean value of plant height, number of leaves, number of fruits per plant, fruit weight per plant total yield per plot and the thickest plant girth. Similarly, the sweet pepper plants treated with 80?g/L of moringa leaf powder had the lowest infection index (root gall) and nematode population. Application of moringa leaf powder at 40, 60 and 80?g/L increased sweet pepper yield and decreased nematode population confirming their potential in management of root-knot nematodes.  相似文献   

3.
To determine the presence and level of root-knot nematode (Meloidogyne spp.) infestation in Southern California bell pepper (Capsicum annuum) fields, soil and root samples were collected in April and May 2012 and analyzed for the presence of root-knot nematodes. The earlier samples were virtually free of root-knot nematodes, but the later samples all contained, sometimes very high numbers, of root-knot nematodes. Nematodes were all identified as M. incognita. A nematode population from one of these fields was multiplied in a greenhouse and used as inoculum for two repeated pot experiments with three susceptible and two resistant bell pepper varieties. Fruit yields of the resistant peppers were not affected by the nematodes, whereas yields of two of the three susceptible pepper cultivars decreased as a result of nematode inoculation. Nematode-induced root galling and nematode multiplication was low but different between the two resistant cultivars. Root galling and nematode reproduction was much higher on the three susceptible cultivars. One of these susceptible cultivars exhibited tolerance, as yields were not affected by the nematodes, but nematode multiplication was high. It is concluded that M. incognita is common in Southern California bell pepper production, and that resistant cultivars may provide a useful tool in a nonchemical management strategy.  相似文献   

4.
Cotton seedlings were inoculated with a range of initial populations (Pi) of Meloidogyne incognita in greenhouse experiments to test the relationship between nematode population densities and egg viability. In two of three experiments, a significant (P < 0.05) negative linear relationship was detected between percentage of hatch of first generation eggs and log Pi. A similar relationship between hatch and root-gall index was observed. In two experiments numbers of eggs judged to be nonviable based on appearance were significantly greater (P < 0.05) in the highest Pi (60,000 eggs/seedling) treatments than in treatments with lower Pi (600-6,000 eggs/seedling). It was concluded that Pi affects egg viability measured as percentage of hatch and that this relationship may play a role in the density-dependent winter survival rates of Meloidogyne species.  相似文献   

5.
The tethered-nematode technique was adapted for use with second-stage juveniles of Meloidogyne incognita. The data demonstrate that M. incognita exhibits the same patterns of behavior as adults of the free-living nematode, Caenorhabditis elegans. The principal differences are that M. incognita is slower and less regular in its behavior than C. elegans. The frequency of normal waves is about 0.2 Hz; that of reversal waves is about 0.06 Hz. Reversal bouts last about 1 minute. In response to a change in NaCl concentration, M. incognita modulates the probability of initiating a reversal bout in the same manner as C. elegans except that it responds more slowly and is repelled instead of attracted.  相似文献   

6.
The effects of host genotype and initial nematode population densities (Pi) on yield of soybean and soil population densities of Heterodera glycines (Hg) race 3 and Meloidogyne incognita (Mi) race 3 were studied in a greenhouse and field microplots in 1983 and 1984. Centennial (resistant to Hg and Mi), Braxton (resistant to Mi, susceptible to Hg), and Coker 237 (susceptible to Hg and Mi) were planted in soil infested with 0, 31, or 124 eggs of Hg and Mi, individually and in all combinations, per 100 cm³ soil. Yield responses of the soybean cultivars to individual and combined infestations of Hg and Mi were primarily dependent on soybean resistance or susceptibility to each species separately. Yield of Centennial was stimulated or unaffected by nematode treatments, yield of Braxton was suppressed by Hg only, and yield suppressions caused by Hg and Mi were additive and dependent on Pi for Coker 237. Other plant responses to nematodes were also dependent on host resistance or susceptibility. Population densities of Mi second-stage juveniles (J2) in soil were related to Mi Pi and remained constant in the presence of Hg for all three cultivars. Population densities of Hg J2 on the two Hg-susceptible Cultivars, Braxton and Coker 237, were suppressed in the presence of Mi at low Hg Pi.  相似文献   

7.
Eight to ten precipitin bands were formed in a double immunodiffusion system comparing antigens of adult females of Meloidogyne incognita and M. arenaria. Most of the precipitin bands, based on band position and coalescence, were common to both species. Antiserum specific for M. incognita was prepared by cross absorption. Two populations of M. incognita were serologically identical, whereas two populations of M. arenaria differed slightly with respect to one weak precipitin band.  相似文献   

8.
Egg masses and second-stage larvae of Meloidogyne incognita and M. hapla in soil were exposed to temperatures ranging from 20 to -8 C. Temperature was lowered in 2-day intervals to 16, 12, 8, 4, 0, -4, and -8 C, and the nematodes remained at 4, 0, -4, or -8 C for 18, 14, 10, or 6 days, respectively. Unhatched larvae of both species were more resistant to low temperatures than were embryonic stages. Within the eggs of M. incognita, 7.5% of embryos and 48% of larval stages survived 14 days at 0 C, whereas 9% of embryos and 90% of larval stages in the eggs of M. hapla survived 10 days at -4 C. Second-stage larvae of both species remained infective in sol.1 at 4 or 0 C, but were injured at -4 and -8 C. Infectivily of these larvae was lower in saturated soil than in soil at 51 cm moisture tension at all temperatures.  相似文献   

9.
Quantitative growth response of watermelon (Citrullus lanatus) sensitive to Meloidogyne incognita is poorly understood. Determination of soil population densities of second-stage juveniles (J2) of M. incognita with Baermann funnel extraction often is inaccurate at low soil temperatures. In greenhouse experiments, three sandy soils were inoculated with dilution series of population densities of eggs or J2 of M. incognita and planted in small containers to watermelon ‘Royal Sweet’ or subjected to Baermann funnel extraction. After five weeks of incubation in the greenhouse bioassay plants in egg-inoculated soils, gall numbers on watermelon roots related more closely to inoculated population densities than J2 counts after Baermann funnel extraction. In April 2004, perpendicularly-inserted tubes (45-cm diameter, 55-cm deep) served as microplots where two methyl bromide-fumigated sandy soils were inoculated with egg suspensions of M. incognita at 0, 100, 1,000 or 10,000 eggs/100 cm3 of soil in 15-cm depth. At transplanting of 4-week old watermelon seedlings, soils were sampled for the bioassay or for extraction of J2 by Baermann funnel. In the Seinhorst function of harvested biomass in relation to nematode numbers, decline of biomass with increasing population densities of M. incognita was accurately modeled by the inoculated eggs (R2 = 0.93) and by the counts of galls on the bioassay roots (R2 = 0.98); but poorly by J2 counts (R2 = 0.68). Threshold levels of watermelon top dry weight to M. incognita were 122 eggs/100 cm3 soil, 1.6 galls on bioassay roots, or 3.6 J2/100 cm3 of soil. Using the bioassay in early spring for predicting risk of nematode damage appeared useful in integrated pest management systems of watermelon.  相似文献   

10.
Interactions among Meloidogyne incognita, Pratylenchus brachyurus, and soybean genotype on plant growth and nematode reproduction were studied in a greenhouse. Coker 317 (susceptible to both nematodes) and Gordon (resistant to M. incognita, susceptible to P. brachyurus) were inoculated with increasing initial population densities (Pi) of both nematodes individually and combined. M. incognita and P. brachyurus individually usually suppressed shoot growth of both cultivars, but only root growth on Coker 317 was influenced by a M. incognita × P. brachyurus interaction. Reproduction of both nematodes, although dependent on Pi, was mutually suppressed on Coker 317. P. brachyurus reproduced better on Gordon than on Coker 317 but did not affect resistance to M. incognita. Root systems of Coker 317 were split and inoculated with M. incognita or P. brachyurus or both to determine the nature of the interaction. M. incognita suppressed reproduction of P. brachyurus either when coinhabiting a half-root system or infecting opposing half-root systems; however, P. brachyurus affected M. incognita only if both nematodes infected the same half-root system.  相似文献   

11.
Cotton seedlings grown in a greenhouse and a growth chamber were inoculated with Scutellonema brachyurum, Hoplolaimus columbus, and Meloidogyne incognita, singly and in all possible combinations, at two initial population (Pi) levels (100 and 300/100 cm³). S. brachyurum alone was not pathogenic to cotton at these population levels. It fed primarily as an ectoparasite but matured and reproduced within the root when it penetrated. Populations of S. brachyurum increased in the presence of H. columbus but were suppressed by M. incognita. H. columbus suppressed dry shoot weights of cotton (P = 0.05) at a Pi of 300/100 cm³ soil. Simultaneous inoculation of H. columbus with either M. incognita or S. brachyurum increased H. columbus populations over treatments with H. columbus alone, both at 60 and 90 d after inoculation. M. incognita suppressed cotton shoot weights significantly (P = 0.05) at both Pi levels. Inoculation with S. brachyurum increased M. incognita populations 60 d after inoculation, while H. columbus suppressed populations of M. incognita. Most larvae of M. incognita did not develop to maturity in the presence of H. columbus. Giant cells aborted and were necrotic 20-25 d after inoculation. Since M. incognita and H. columbus feed on different tissues, the inhibition of M. incognita may have resulted from a physiological effect of H. columbus on the host.  相似文献   

12.
The effects of Meloidogyne incognita on the Big Jim, Jalapeno, and New Mexico No. 6 chile (Capsicum annuum) cultivars were investigated in microplots for two growing seasons. All three cultivars were susceptible to M. incognita and reacted similarly to different initial populations of this nematode. Severe stunting and yield suppressions occurred at all initial M. incognita densities tested ranging from 385 to 4,230 eggs and larvae/500 cm³ soil. Regression analysis of the microplot data from a sandy loam soil showed yield losses of 31% for the 1978 season and 25% for the 1979 season for the three cultivars for each 10-fold increase in the initial population of M. incognita.  相似文献   

13.
The cotton root-knot nematode, Meloidogyne incognita acrita, reproduced on the roots of grain sorghum, causing syncytia in the cortex or stele of lateral roots. Giant cells developed either singly with few nuclei or in groups with many nuclei. Giant cells that developed in groups appeared the same as those which developed singly. The pericycle and endodermis were interrupted at the site of nematode invasion. Large areas of these tissues were absent for one-third of the circumference of the stele and extended 1.5 mm longitudinally along the root. In the area where pericycle and endodernris were absent, the parenchyma of the cortex extended to the vascular elements, and abnormal xylem surrounding giant cells extended into the region of the cortex. Root-knot galls appeared on sorghum roots as elongate swellings, discrete knots, or swellings with root proliferation. Galls were not observed on brace roots.  相似文献   

14.
Reproduction of artificially selected near isogenic Meloidogyne incognita lineages virulent and avirulent against the Mi resistance gene of tomato was assessed on host and resistant lines and cultivars of pepper. Egg mass production following inoculation of individual potted seedlings with second-stage juveniles was studied in experiments conducted in controlled environment. Artificially selected Mi-virulent nematode populations were unable to develop on resistant pepper lines PM 217 and PM 687. This suggests that the genetic systems governing resistance to root-knot nematodes are differently expressed in tomato and pepper, in spite of the very close phylogenetic relationships and structural genomic homologies occurring between these two vegetable crops. Moreover, these artificially selected nematode populations were also found unable to develop on the susceptible pepper cultivars California Wonder and Doux Long des Landes, while their pathogenicity was not significantly affected on susceptible tomatoes. Due to the existence of naturally virulent Meloidogyne populations, these results enhance the need for a better understanding of the mechanisms involved, in order to develop new forms of management of plant resistance to root-knot nematodes.  相似文献   

15.
The relationship between the initial (Pi) and final (Pf) population densities of Meloidogyne javanica and yield of watermelon, Citrullus lanatus, cv. Sugar Baby were determined in pot and field experiments. In the pots, the maximum reproduction rate of the nematode was 14, and the equilibrium density was 49 400 eggs/100 cm3 of soil. Yield data represented as fresh top weight fitted the Seinhorst damage function (P < 0.001, R2 = 0.7), and the minimum relative yield (m) was 0.65 at Pi ≥ 3200 eggs/100 cm3 of soil and the tolerance limit (T) 74 eggs/100 cm3. In the field experiments (2011 and 2012), the maximum reproduction rate was 73 and 70, and the equilibrium density 32 and 35 second‐stage juveniles (J2)/100 cm3 soil. Yield data represented as fruit weight fitted the Seinhorst damage function in 2011 (P < 0.001, R2 = 0.92) and the m‐ and T‐values were 0.63 and 20 J2/100 cm3 of soil, respectively. Meloidogyne incognita and M. javanica needed similar length of time for development to egg‐laying females and life cycle completion at 24.4°C.  相似文献   

16.
The effects of soil temperature and initial inoculum density (Pi) of Meloidogyne incognito and M. javanica on growth of wheat (Triticum aestivum cv. Anza) and nematode reproduction were studied in controlled temperature baths in the glasshouse. Nematode reproduction was directly proportional to temperature between 14 and 30 C for M. incognita and between 18 and 26 C for M. javanica. Reproduction rates (Pf/Pi, where Pf = final number of eggs) for Pi''s of 3,000, 9,000, and 30,000 eggs/plant were greatest at each temperature when Pi = 3,000. Maximum M. incognita reproduction rate (Pf/Pi = 51.12) was at 30 C. At 26 C, M. javanica reproduction (Pf/Pi = 14.82, 9.02, and 4.23 for Pi = 3,000, 9,000, and 30,000, respectively) was about half that of M. incognita when Pi = 3,000 or 9,000 but similar when Pi = 30,000. Reproduction of both species was depressed between 14 and 18 C. Shoot and root growth and head numbers were inversely related to soil temperature between 14 and 30 C but were not affected by the Pi of M. incognita when 7 d old seedlings were inoculated. When newly germinated seedlings were inoculated with M. incognita or M. javanica, the Pi did not affect shoot and root fresh weights, shoot/root ratio, and tillering, but it did reduce root dry weight (M. javanica at 26 C) and increase shoot dry weight (M. incognita at 18-22 C). The optimum temperature range is lower for wheat growth than for nematode reproduction. Wheat cv. Anza is a good host for M. incognita and M. javanica, but it is tolerant to both species.  相似文献   

17.
Terminated small grain cover crops are valuable in light textured soils to reduce wind and rain erosion and for protection of young cotton seedlings. A three-year study was conducted to determine the impact of terminated small grain winter cover crops, which are hosts for Meloidogyne incognita, on cotton yield, root galling and nematode midseason population density. The small plot test consisted of the cover treatment as the main plots (winter fallow, oats, rye and wheat) and rate of aldicarb applied in-furrow at-plant (0, 0.59 and 0.84 kg a.i./ha) as subplots in a split-plot design with eight replications, arranged in a randomized complete block design. Roots of 10 cotton plants per plot were examined at approximately 35 days after planting. Root galling was affected by aldicarb rate (9.1, 3.8 and 3.4 galls/root system for 0, 0.59 and 0.84 kg aldicarb/ha), but not by cover crop. Soil samples were collected in mid-July and assayed for nematodes. The winter fallow plots had a lower density of M. incognita second-stage juveniles (J2) (transformed to Log10 (J2 + 1)/500 cm3 soil) than any of the cover crops (0.88, 1.58, 1.67 and 1.75 Log10(J2 + 1)/500 cm3 soil for winter fallow, oats, rye and wheat, respectively). There were also fewer M. incognita eggs at midseason in the winter fallow (3,512, 7,953, 8,262 and 11,392 eggs/500 cm3 soil for winter fallow, oats, rye and wheat, respectively). Yield (kg lint per ha) was increased by application of aldicarb (1,544, 1,710 and 1,697 for 0, 0.59 and 0.84 kg aldicarb/ha), but not by any cover crop treatments. These results were consistent over three years. The soil temperature at 15 cm depth, from when soils reached 18°C to termination of the grass cover crop, averaged 9,588, 7,274 and 1,639 centigrade hours (with a minimum threshold of 10°C), in 2005, 2006 and 2007, respectively. Under these conditions, potential reproduction of M. incognita on the cover crop did not result in a yield penalty.  相似文献   

18.
Microplot and greenhouse experiments were conducted to evaluate the effects of soil incorporation of the nematophagous fungus Arthrobotrys conoides and green alfalfa mulch on the population dynamics of Meloidogyne incognita on corn. Reproduction of M. incognita and the incidence of root galling were reduced by the addition of A. conoides and/or green alfalfa in all tests. Numbers of juveniles were reduced by as much as 84%, and eggs were fewest in early to mid-season soil samples from microplots. Yields increased in treatments with A. conoides and/or green alfalfa in greenhouse tests and in the microplot tests in 1979. No interaction was found between the fungus and green alfalfa in the reduction of the nematode population.  相似文献   

19.
Phenamiphos applied at 6.7 kg ai/ha through a solid set or a center pivot irrigation system with 28 mm of water effectively controlled root-knot nematodes, Meloidogyne incognita, and resulted in greater snap bean growth and yields irrespective of growing season, tillage method, or cover crop system. The percentage yield increases attributed to this method of M. incognita control over nontreated controls were 45% in the spring crop, and 90% and 409% in the fall crops following winter rye and fallow, respectively. Root galling was not affected by tillage systems or cover crop, but disk tillage resulted in over 50% reduction in bean yield compared with yields from the subsoil-bed tillage system.  相似文献   

20.
Four or five growth stages of 14 forest tree species were tested for susceptibility to Meloidogyne incognita at five inoculum levels. Responses ranged from the highly susceptible ''China fir'' to immune ''Taiwania''. Even highly susceptible species became increasingly tolerant at later growth stages, thus root-knot appears to be a greater problem in nurseries than in established forests. Heavily suberized cells which restricted nematode development was the predominant host response in Norway spruce, and in the jack, scotch, and Virginia pines. Adult females in jack and scotch pine, which elicited a minimum of suberized tissue, were found adjacent to infection sites showing maximum suberization which indicates that resistance can be highly localized and variable within an individual host. A few gravid females, but no giant cells, were observed in these two species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号