首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An isolate of Bursaphelenchus xylophilus from Pinus sylvestris in Missouri infected and reproduced in 2-3-year-old seedlings of P. sylvestris and to some extent in seedlings of P. nigra. Wilting, however, occurred only in P. sylvestris. B. xylophilus isolated from P. strobus in Vermont infected and reproduced only in P. strobus seedlings. P. taeda seedlings were resistant to both of these isolates. Phytotoxin production was seen only in susceptible seedling species-nematode combinations. Significant water loss occurred only in those seedlings that were wilted because of infection by a compatible nematode isolate. Our results suggest that these isolates are pathotypes of B. xylophilus.  相似文献   

2.
Etiological studies to determine the cause of decline and death of Pinus spp. in Delaware were initiated in 1980. The pinewood nematode, Bursaphelenchus xylophilus, was found to be the major canse of mortality in Japanese black pine (Pinus thunbergii). When inoculated into healthy 5-yr-old Japanese black pines, B. xylophilus produced typical decline symptoms observed in the field. The xylophilous fungi most often associated with declining trees, Rhizosphaera pini, Fusarium spp., and Pestalotia funerea, were not pathogenic to Japanese black pine in greenhouse tests. Mineral analyses of soil and foliage showed no significant differences between healthy and infested trees. B. xylolyhilus was also found on loblolly pine (P. taeda), scrub pine (P. virginiana), Scots pine (P. sylvestris), red pine (P. resinosa), Eastern white pine (P. strobus), and pitch pine (P. rigida).  相似文献   

3.
Pinewood nematode, Bursaphelenchus xylophilus (Steiner &Buhrer) Nickle, spatial dispersion was determined in Scots pine, Pinus sylvestris L., bolts infested with the pine sawyer beetle, Monochamus carolinensis (Olivier) and in bolts without M. carolinensis. According to Taylor''s power law and Green''s index of dispersion, nematode dispersion was aggregated in both sets of bolts. The degree of aggregation did not differ significantly between beetle-infested and noninfested bolts, suggesting that the presence of M. carolinensis does not affect nematode dispersion within a bolt. Nematode population densities differed radially in bolts not infested with pine sawyers, but in a nonregular pattern. Moisture content of the bolts was correlated with population density of B. xylophilus, suggesting that nematode aggregates occur in areas of high moisture content.  相似文献   

4.
Inhibitory effects of Bursaphelenchus mucronatus on the number of B. xylophilus carried by an adult Monochamus alternatus were investigated using artificial pupal chambers. When pupal chambers were infested with either B. xylophilus or B. mucronatus, the load of B. xylophilus onto the beetle was greater (P < 0.001) than that of B. mucronatus. However, within the pupal chamber there was no difference in the abundance of the third-stage dispersal juveniles, which would molt to the fourth-stage dispersal juveniles to board beetles. The nematode load on beetles that emerged from pupal chambers infested with both Bursaphelenchus species was smaller (P = 0.015) than that of beetles with B. xylophilus alone but greater (P < 0.001) than that of beetles with B. mucronatus alone, suggesting an inhibitory effect of B. mucronatus. As a result of this study, the rate of inhibition of B. mucronatus on molting of third-stage dispersal juveniles of B. xylophilus to fourth-stage dispersal juveniles was 0.65, which resulted in great inhibition on boarding beetles at a rate of 0.7.  相似文献   

5.
The fungal feeding, hermaphroditic Bursaphelenchus okinawaensis is a laboratory model to understand the biology of Bursaphelenchus. The extent to which B. okinawaensis can be used to model Bursaphelenchus xylophilus mating was investigated. A chemotaxis assay was conducted to examine whether B. xylophilus and B. okinawaensis produce and respond to volatile sex attractants. Unmated B. xylophilus females were found to attract B. xylophilus males. Similarly, old (sperm depleted) but not young (sperm repleted) B. okinawaensis hermaphrodites attract B. okinawaensis males. Thus, in both species, sperm status corresponds to its ability to attract males. B. xylophilus males also produce a volatile pheromone that attracts both mated and unmated females. A second assay, in which the behavior of males on petri plates in the presence of different females or hermaphrodites of Bursaphelenchus was observed, revealed that B. xylophilus unmated females attract B. okinawaensis males, and B. okinawaensis old hermaphrodites attract B. xylophilus males. These observations suggested that the pheromones of Bursaphelenchus work to some extent across species. Mating behavior through spicule insertion occurs across species, suggesting that postcopulatory mechanisms prevent production of interspecific progeny. The hermaphroditic B. okinawaensis will be a useful model to conduct genetic studies for the understanding of the molecular mechanisms underlying mating behavior in Bursaphelenchus nematodes.  相似文献   

6.
Total genomic DNA from Bursaphelenchus xylophilus pathotypes MPSy-1 and VPSt-1 and from B. mucronatus was digested with restriction endonucleases. DNA fragments were electrophoretically separated, Southern blotted to nitrocellulose, and hybridized to genomic DNA from one of the isolates. The resulting hybridization patterns indicate genomic differences in repetitive DNA sequences among these populations. Greatest differences were seen between B. xylophilus and B. mucronatus, but genomic differences were also apparent between B. xylophilus pathotypes MPSy-1 and VPSt-1 and between a population from P. nigra in New Jersey and a population of a mucronate form from Abies balsamea in Quebec, Canada.  相似文献   

7.
Since it was first introduced into Asia from North America in the early 20th century, the pine wood nematode Bursaphelenchus xylophilus has caused the devastating forest disease called pine wilt. The emerging pathogen spread to parts of Europe and has since been found as the causal agent of pine wilt disease in Portugal and Spain. In 2011, the entire genome sequence of B. xylophilus was determined, and it allowed us to perform a more detailed analysis of B. xylophilus parasitism. Here, we identified 1,515 proteins secreted by B. xylophilus using a highly sensitive proteomics method combined with the available genomic sequence. The catalogue of secreted proteins contained proteins involved in nutrient uptake, migration, and evasion from host defenses. A comparative functional analysis of the secretome profiles among parasitic nematodes revealed a marked expansion of secreted peptidases and peptidase inhibitors in B. xylophilus via gene duplication and horizontal gene transfer from fungi and bacteria. Furthermore, we showed that B. xylophilus secreted the potential host mimicry proteins that closely resemble the host pine’s proteins. These proteins could have been acquired by host–parasite co-evolution and might mimic the host defense systems in susceptible pine trees during infection. This study contributes to an understanding of their unique parasitism and its tangled roots, and provides new perspectives on the evolution of plant parasitism among nematodes.  相似文献   

8.
9.
Interbreeding potential, chromosome number, and host range were compared among several isolates and species of Bursaphelenchus from diverse geographic areas. Some isolates from North America, Japan, and France had a wide-ranging interbreeding potential, whereas others were restricted in their potential to hybridize with other isolates. Although interbreeding occurred in the laboratory between some "M" and "R" forms of B. xylophilus, interbreeding of B. xylophilus and B. mucronatus was rare. The hybrids had the pathogenicity of the parent with the broader host range. This fact suggests that virulence may be inherited as a dominant character or that increased virulence may have resulted from differences in hybrid vigor. The haploid chromosome number of the different isolates separated the isolates into three groups and distinguished B. xylophilus from B. mucronatus. The findings suggest that the pinewood nematode species complex consists of sibling species that have evolved by reproductive isolation, that the French isolate is a new species, and that B. xylophilus and B. mucronatus have evolved from a common ancestor.  相似文献   

10.
《Mycoscience》2014,55(5):367-377
The nematophagous fungus Esteya vermicola, strain NKF 13222, was purified from an isolate of Bursaphelenchus rainulfi which was intercepted from wood packaging materials originating in Brazil and arriving at Tianjin port in China. The fungus produced two types of conidiogenous cells and conidia, each with different germination modes. More lunate adhesive conidia than bacilloid conidia were produced on nutrient-poor water agar medium. Morphological comparisons revealed the NKF 13222 strain closely resembled the Taiwan strain E. vermicola (ATCC 74485) previously isolated from the pinewood nematode B. xylophilus. Phylogenetic analysis of the β-tubulin and elongation factor 1-α genes indicated that the NKF 13222 grouped with other strains of E. vermicola including the Taiwan strain. This was the first record of E. vermicola from B. rainulfi in South America. Infection tests demonstrated that NKF 13222 was more infective to aphelenchid than tylenchid nematodes and that only lunate adhesive conidia were infectious. The results suggest that the fungus might be a pathogen of plant parasitic nematodes with a broad distribution and provide new information for the potential biocontrol of plant diseases caused by B. xylophilus, Aphelenchoides spp. and Ditylenchus destructor.  相似文献   

11.
The influence of temperature on reproduction and movement was examined for seven geographic isolates of Bursaphelenchus xylophilus, three of B. mucronatus, and two of their interspecific hybrids. All nematode isolates tended to be more active and fecund the higher the temperature, with the isolates of B. xylophilus reaching a reproductive peak at higher temperatures than isolates of B. mucronatus. Most isolates of B. xylophilus and B. mucronatus did not produce significantly more progeny at higher male-to-female ratios. The interspecific hybrids appear to possess temperature-related characteristics of either B. xylophilus or both of the parents.  相似文献   

12.
The effect of temperature on pine wilt development in Scots pine (Pinus sylvestris) was examined in three experiments. Container-grown pines (4-6 years old) inoculated with 1,500 Bursaphelenchus xylophilus were incubated at constant temperatures in growth chamber for 8 weeks, then at a temperature range of 15-30 C in a greenhouse for 10-12 weeks. Nematode infection was greater, tree mortality was higher, and disease incubation was shorter at 32 and 30 C than at 25, 23, 18, and 11 C. Foliar symptoms developed more rapidly and uniformly at higher temperatures. Ninety-five percent of tree deaths at 32 and 30 C and 88% at 25 and 23 C occurred within the 8-week exposure to constant temperatures. Mortality at 18, 16, and 11 C occurred only after transfer to the greenhouse. Results indicate that pine wilt incidence is directly related and disease incubation period is inversely related to temperature and that high-temperature stress predisposes Scots pine to lethal infection by B. xylophilus.  相似文献   

13.
Pleurotus ferulae Lenzi, a species of edible fungus, was found to have nematicidal activity in experiments searching for nematicidal fungi. Three nematicidal metabolities cheimonophyllon E (compound 1), 5α,8α-epidioxyergosta-6,22-dien-3β-ol (compound 2) and 5-hydroxymethyl-furancarbaldehyde (compound 3) were isolated based on bioassay-guided fractionation from the extracts of the fungusP. ferulae. Their structures were determined by spectroscopic data. All of them showed activities against nematodesBursaphelenchus xylophilus (Steiner et Buhrer) Nickle andPanagrellus redivivus (Linn.) Goodey. The median lethal concentrations (LC50) of compounds 1, 2 and 3 at 72 h were 70.8, 174.6, and 54.7 mg L?1 respectively againstB. xylophilus and were 125.6, 128.1, and 82.8 mg L?1 respectively againstP. redivivus. The three compounds were obtained fromP. ferulae for the first time.  相似文献   

14.
Maximum and minimum xylem pressure potentials of needles were measured to evaluate water status of Pinus thunbergii Parl. after inoculation with the virulent or avirulent populations of Bursaphelenchus xylophilus or B. mucronatus. In virulent B. xylophilus-inoculated pines, the water status changed abruptly and needle chlorosis occurred by day 29 after inoculation. Similar changes were not seen in B. mucronatus-inoculated and uninoculated control pines. Oleoresin flow ceased in virulent B. xylophilus-inoculated pines. Avirulent B. xylophilus-inoculated pines responded very little to nematode invasion by a slight decrease in oleoresin flow. Oleoresin flow did not vary in B. mucronatus-inoculated and uninoculated control pines. A decrease in soil water potential below field capacity seemed to accelerate the development of pine wilt disease.  相似文献   

15.
The effect of wound, wound + water, wound + Bursaphelenchus xylophilus culture filtrate, or wound + lethal B. xylophilus doses on the assimilation and translocation of ¹⁴C by 8-month-old Pinus sylvestris seedlings was tested. In two separate experiments, pine seedlings were exposed to 28.35 μCi of ¹⁴CO₂ for 20 minutes below or above (to the pine shoot leader) the point of nematode inoculation. After 2 and 4 hours of dark adaptation, 80% ethanol soluble ¹⁴C tissue extracts were determined by liquid scintillation counting. Nematode infection significantly (P = 0.05) decreased ¹⁴C assimilation. Treatments translocated less than 6% of the total amount of the fixed ¹⁴C and translocation generally decreased with increasing size of nematode inoculum. However, infected pines translocated a greater proportion of the amount of ¹⁴C fixed per gram of exposed nematode-plant tissue than did the control pines. The lower levels of photoassimilate entering the plant system probably resulted in a reduced metabolic capacity in B. xylophilus-infected pine seedlings. The effect on photosynthesis could be one of the key factors leading to death of pines through starvation, and it is possible that it was preceded by an effect on related physiological processes such as water uptake.  相似文献   

16.
The pinewood nematode Bursaphelenchus xylophilus, is the pathogenic agent of pine wilt disease and a globally notable pine pest. Despite being a plant pathogen, B. xylophilus has a mycophagous phase during its life cycle. We assessed the capacity for polyphagy of mycetophagous pinewood nematodes, testing which of the common species of fungi in pine trees provide better food and higher population growth rates. B. xylophilus performed particularly well on airborne fungi, namely the endophytes Botrytis cinerea and Cladosporium herbarum, and the pathogens Sirococcus conigenus and Sphaeropsis sapinea. Surprisingly, growth performance was not as good on the blue stain species (Ophiostoma spp. and Leptographium spp.) which are considered natural associates of B. xylophilus in the wild. Most of the fungi nonetheless permitted positive population growth of B. xylophilus, which is polyphagous and capable of feeding on numerous fungal species with diverse ecological niches.  相似文献   

17.
《Journal of Asia》2007,10(2):171-175
Bursaphelenchus xylophilus has been recognized as a causal pathogen of pine wilt disease (PWD). In order to identify relevant molecular biomarkers, we selected a variable region of endo-β-1, 4-glucanase (β 14-gcn) which was cloned from the cDNA of B. xylophilus and B. mucronatus. We then identified three novel β14-gcn isoforms: Bm-β 14-gcn and Bm-β 14-gcni from B. mucronatus, and Bx-β 14-gcn from B. xylophilus. Bm-β 14-gcn and Bx-β 14-gcn were found to be identical, whereas Bm-β 14-gcni was unique to B. mucronatus. These isoforms are Bursaphelenchus-specific and may be employed as molecular markers for the diagnosis of PWD. Our phylogenetic analysis showed that these β 14-gcns from Bursaphelenchus species were associated most closely with fungal β 14-gcns.  相似文献   

18.
Pine wilt disease (PWD) caused by the pine wood nematode (PWN), Bursaphelenchus xylophilus, is one of the most devastating diseases of Pinus spp. The PWN was therefore listed as one of the most dangerous forest pests in China meriting quarantine. Virulence of the PWN is closely linked with the spread of PWD. However, main factors responsible for the virulence of PWNs are still unclear. Recently epiphytic bacteria carried by PWNs have drawn much attention. But little is known about the relationship between endophytic bacteria and virulence of B. xylophilus. In this research, virulence of ten strains of B. xylophilus from different geographical areas in six provinces of China and four pine species were tested with 2-year-old seedlings of Pinus thunbergii. Endophytic bacteria were isolated from PWNs with different virulence to investigate the relationship between the bacteria and PWN virulence. Meanwhile, the carbon metabolism of endophytic bacteria from highly and low virulent B. xylophilus was analyzed using Biolog plates (ECO). The results indicated that ten strains of PWNs showed a wide range of virulence. Simultaneously, endophytic bacteria were isolated from 90% of the B. xylophilus strains. The dominant endophytic bacteria in the nematodes were identified as species of Stenotrophomonas, Achromobacter, Ewingella, Leifsonia, Rhizobium, and Pseudomonas using molecular and biochemical methods. Moreover, S. maltophilia, and A. xylosoxidans subsp. xylosoxidans were the predominant strains. Most of the strains (80%) from P. massoniana contained either S. maltophilia, A. xylosoxidans, or both species. There was a difference between the abilities of the endophytic bacteria to utilize carbon sources. Endophytic bacteria from highly virulent B. xylophilus had a relatively high utilization rate of carbohydrate and carboxylic acids, while bacteria from low virulent B. xylophilus made better use of amino acids. In conclusion, endophytic bacteria widely exist in B. xylophilus from different pines and areas; and B. xylophilus strains with different virulence possessed various endophytic bacteria and diverse carbon metabolism which suggested that the endophytic bacteria species and carbon metabolism might be related with the B. xylophilus virulence.  相似文献   

19.
Invasive species cause severe ecological and economic damage; however, the mechanisms underlying their successful invasion often remain elusive. In the case of Bursaphelenchus xylophilus, a global quarantine pest which invaded Asia and Europe, it has been suggested that this species possesses highly competitive abilities, which promotes its establishment and rapid spread. To explore biological traits that may explain its highly competitive abilities, we focused on expression of phenotypic plasticity in response to the food conditions experienced by the females during their development as juveniles in the invasive species B. xylophilus and native species Bursaphelenchus mucronatus. We report an unexpected significant difference of phenotypic trade-off between egg number and egg size in the invasive species B. xylophilus and native species B. mucronatus. This leads to superior propagation ability of invasive species, under high and low food conditions in culture. These effects reflect adaptive optimal resource allocation where more eggs are produced in favorable environments to enhance population viability. Furthermore, we show that B. xylophilus eggs hatched earlier than B. mucronatus when their parents experienced high food availability. Thus, this study revealed, for the first time, phenotypic plasticity of reproductive traits in B. xylophilus which empowers the species a competitive advantage relative to their native counterpart B. mucronatus when they are under different range of food availability. These results are a step towards answering the vital question of how an exotic invasive species exclude a native species from its original niche.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号