首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ten species of stylet-bearing nematodes were recovered in a survey of sycamore (Platanus occidentalis L. ) stands in Georgia. Helicotylenchus, Xiphinema, and Criconemoides were the genera found most frequently. Populations of Hoplolaimus galeatus, Scutellonema brachyurum, Helicotylenchus dihystera and H. pseudorobustus increased on greenhouse-grown sycamore, but Trichodorus christiei, Xiphinema americanum, Meloidogyne hapla, M. arenaria and M. incognita did not. Hoplolaimus galeatus and S. brachyurum are semi-endoparasites; H. dihystera and H. pseudorobustus are migratory endoparasites. Hoplolaimus galeatus caused extensive root necrosis and marked decrease of fresh weights of seedling roots and tops. Helicotylenchus dihystera and S. brachyurum produced only qualitatively different sparse and unhealthy root growth. Helicotylenchus pseudorobustus caused only a reduction in root surface area.  相似文献   

2.
Allelopathy in the Management of Plant-Parasitic Nematodes   总被引:1,自引:0,他引:1  
There are numerous reports of nematicidal chemicals in crude plant homogenates, leachates, and decomposing residues. These compounds are usually assumed to be secondary metabolites, which serve as chemical defenses against disease and parasites. When such compounds are released into the rhizosphere, they are known as allelochemicals. The possibility exists to exploit allelochemicals for nematode control, and there have been many attempts to use this approach either by rotation, intercropping, or green manure treatments. Results have met with mixed success. Proof of allelochemical activity in field situations is difficult to obtain, but it is evident that some rotation crops are significantly better at reducing nematode populations than others. Rotations with non-host plants may simply deny the nematode population an adequate food source for reproduction (passive suppression), whereas allelopathic crops kill nematodes by the production of toxic compounds (active suppression). Progress toward sustainable agriculture should benefit from studies on allelopathic nematode control. However, grower acceptance of new plant-rotation strategies are based on economic and logistical considerations as well as efficacy. A potential practical application of allelopathic nematode control that involves using rapeseed as a green manure crop to reduce populations of Xiphinema americanum sensu lato in temperate orchards is presented.  相似文献   

3.
A comprehensive survey of the plant parasitic nematodes associated with cowpea (Vigna unguiculata) production fields was carried out in the three primary agro-climatic zones of Burkina Faso in West Africa. Across the three zones, a total of 109 samples were collected from the farms of 32 villages to provide a representative coverage of the cowpea production areas. Samples of rhizosphere soil and samples of roots from actively growing cowpea plants were collected during mid- to late-season. Twelve plant-parasitic nematode genera were identified, of which six appeared to have significant parasitic potential on cowpea based on their frequency and abundance. These included Helicotylenchus, Meloidogyne, Pratylenchus, Scutellonema, Telotylenchus, and Tylenchorhynchus. Criconemella and Rotylenchulus also had significant levels of abundance and frequency, respectively. Of the primary genera, Meloidogyne, Pratylenchus, and Scutellonema contained species which are known or suspected to cause losses of cowpea yield in other parts of the world. According to the prevalence and distribution of these genera in Burkina Faso, their potential for damage to cowpea increased from the dry Sahelian semi-desert zone in the north (annual rainfall < 600 mm/year), through the north-central Soudanian zone (annual rainfall of 600-800 mm/year), to the wet Soudanian zone (annual rainfall ≥ 1000 mm) in the more humid south-western region of the country. This distribution trend was particularly apparent for the endoparasitic nematode Meloidogyne and the migratory endoparasite Pratylenchus.  相似文献   

4.
The primary source of plant parasitic nematodes in irrigation waterways in the Columbia Basin Project of eastern Washington is irrigation runoff returned into the irrigation system. This has contributed to the rapid spread of plant parasitic nematodes observed during eight years of study.  相似文献   

5.
A non-chemical technique for surface sterilizing plant-parasitic nematodes for aseptic cultures is described. The method is most applicable to nematodes with active migratory infective stages and requires only a few starting specimens. Rate of achieving a primary aseptic culture with the technique ranged from 60%-100% depending on the conditions of the specimens collected for culturing. Aseptic cultures of species of Meloidogyne, Rotylenchuluz, Pratylenchus, and Radopholus initiated with the method remained contamination-free after 12 months of maintenance in tomato root explant or alfalfa callus cultures. Further studies of Pluronic F127, a polyol gel medium employed in the technique to confine the spread of contaminating bacteria or fungi associated with the nematodes, showed that the polyol gel was a suitable support medium for culturing corn root explant, alfalfa callus tissues, and consequently Pratylenchus species including P. agilis, P. brachyurus, P. scribneri, and P. penetrans. During the course of 10 months, P. penetrans reared in polyol-base medium followed a standard biological growth curve, multiplied to a higher population density, maintained a similar female-to-male ratio, and possessed a similar tendency to reside inside or outside host tissues as did P. penetrans reared in agar-base medium. The percentages of P. penetrans juveniles in the sub-populations residing outside or inside the host tissues reared in polyol-base medium also were similar to and fluctuated temporally in like manner as those reared in agar-base medium. Members of these sub-populations from the polyol- or agar-base were equally infective and reproductive after 9 months of culturing.  相似文献   

6.
Plant-parasitic nematodes can be very damaging to turfgrasses. The projected cancellation of the registration for fenamiphos in the near future has generated a great deal of interest in identifying acceptable alternative nematode management tactics for use on turfgrasses. Two field experiments were conducted to evaluate the effectiveness of repeated applications of several commercially available nematicides and root biostimulants for reducing population densities of plant-parasitic nematodes and (or) promoting health of bermudagrass in nematode-infested soil. One experimental site was infested with Hoplolaimus galeatus and Trichodorus obtusus, the second with Belonolaimus longicaudatus. In both trials, none of the experimental treatments reduced population densities (P ≤ 0.1) of plant-parasitic nematodes, or consistently promoted turf visual performance or turf root production. Nematologists with responsibility to advise turf managers regarding nematode management should thoroughly investigate the validity of product claims before advising clientele in their use.  相似文献   

7.
Host suitability of olive cultivars Arbequina and Picual to several plant-parasitic nematodes was studied under controlled conditions. Arbequina and Picual were not suitable hosts for the root-lesion nematodes Pratylenchus fallax, P. thornei, and Zygotylenchus guevarai. However, the ring nematode Mesocriconema xenoplax and the spiral nematodes Helicotylenchus digonicus and H. pseudorobustus reproduced on both olive cultivars. The potential of Meloidogyne arenaria race 2, M. incognita race 1, and M. javanica, as well as P. vulnus and P. penetrans to damage olive cultivars, was also assessed. Picual planting stocks infected by root-knot nematodes showed a distinct yellowing affecting the uppermost leaves, followed by a partial defoliation. Symptoms were more severe on M. arenaria and M. javanica-infected plants than on M. incognita-infected plants. Inoculation of plants with 15,000 eggs + second-stage juveniles/pot of these Meloidogyne spp. suppressed the main height of shoot and number of nodes of Arbequina, but not Picual. Infection by each of the two lesion nematodes (5,000 nematodes/pot) or by each of the three Meloidogyne spp. suppressed (P < 0.05) the main stem diameter of both cultivars. On Arbequina, the reproduction rate of Meloidogyne spp. was higher (P < 0.05) than that of Pratylenchus spp.; on Picual, Pratylenchus spp. reproduction was higher (P < 0.05) than that of Meloidogyne spp.  相似文献   

8.
Abamectin is nematicidal to Meloidogyne incognita and Rotylenchulus reniformis, but the duration and length of cotton taproot protection from nematode infection by abamectin-treated seed is unknown. Based on the position of initial root-gall formation along the developing taproot from 21 to 35 d after planting, infection by M. incognita was reduced by abamectin seed treatment. Penetration of developing taproots by both nematode species was suppressed at taproot length of 5 cm by abamectin-treated seed, but root penetration increased rapidly with taproot development. Based on an assay of nematode mobility to measure abamectin toxicity, the mortality of M. incognita associated with a 2-d-old emerging cotton radicle was lower than mortality associated with the seed coat, indicating that more abamectin was on the seed coat than on the radicle. Thus, the limited protection of early stage root development suggested that only a small portion of abamectin applied to the seed was transferred to the developing root system.  相似文献   

9.
The effects of environmental conditions on population trends of plant-parasitic nematodes were studied in experimental plots of five wheatgrasses in the western Utah desert. In a 3-year (1984-86) field study, soil water and temperature affected the population trends of the ectoparasites, Tylenchorhynchus acutoides and Xiphinema americanum, and the migratory endoparasite, Pratylenchus neglectus, on Fairway crested wheatgrass, Agropyron cristatum; ''Hycrest'' crested wheatgrass, A. cristatum X A. desertorura; ''Rosana'' western wheatgrass, Pascopyrum smithii; ''Oahe'' intermediate wheatgrass, Thinopyrum intermedium; and RS-1 hybrid (Elytrigia repens X Pseudoroegneria spicata). The largest soil populations of these nematode species were collected in 1984 under good plant-growth conditions. A reduction in nematode populations occurred in 1985 and 1986, possibly because of low soil-water conditions. There was a positive relationship between high soil water and maximum population densities of T. acutoides in the spring and fall of 1984, and between low soil water and minimum population densities of the nematode in 1985 and 1986. Pratylenchus neglectus populations were affected by soil water, although to a lesser degree than the ectoparasitic nematodes. Population densities of the three nematode species were significantly lower in the drier years of 1985 and 1986 than in 1984. Nematode populations were greater at the lower soil depths in the fall than in the spring or summer.  相似文献   

10.
Respiration of selected nematode species was measured relative to CO₂ level, temperature, osmotic pressure, humidity, glucose utilization and high ionic concentrations of sodium and potassium.In general, respiration was stimulated most by the dominant environmental factors at levels near those expected in the nematode''s "natural" habitat. Soil-inhabiting nematodes utilized O₂, most rapidly with high (1-2%) CO₂ whereas a foliar nematode (Aphelenchoides ritzemabosi) did so with 0.03% CO₂, the concentration typically found in air. Temperature optima for respiration corresponded closely to those for other activities. Ditylenchus dipsaci and Pratylenchus penetrans adults and Anguina tritici and A. agrostis second-stage larvae respired within the range of osmotic pressures from 0 to 44.8 arm and respiration of their drought-resistant stages was stimulated by increasing osmotic pressure which accompanies the onset of drought. Rehydration of A. tritici and A. agrostis larvae with RH as low as 5% stimulated measurable respiration. Glucose utilization from liquid medium by A. tritici larvae or A. ritzembosi was not detectable. Supplemental Na⁺ stimulated respiration of Anguina tritici, K⁺ did not.  相似文献   

11.
The antibiotic 2,4-diacetylphloroglucinol (DAPG), produced by some strains of Pseudomonas spp., is involved in suppression of several fungal root pathogens as well as plant-parasitic nematodes. The primary objective of this study was to determine whether Wood1R, a D-genotype strain of DAPG-producing P. fluorescens, suppresses numbers of both sedentary and migratory plant-parasitic nematodes. An experiment was conducted in steam-heated soil and included two seed treatments (with Wood1R and a control without the bacterium) and six plant-nematode combinations which were Meloidogyne incognita on cotton, corn, and soybean; M. arenaria on peanut; Heterodera glycines on soybean; and Paratrichodorus minor on corn. Wood 1R had no effect on final numbers of M. arenaria, P. minor, or H. glycines; however, final numbers of M. incognita were lower when seeds were treated with Wood1R than left untreated, and this reduction was consistent among host plants. Population densities of Wood1R were greater on the roots of corn than on the other crops, and the bacterium was most effective in suppressing M. incognita on corn, with an average reduction of 41%. Despite high population densities of Wood1R on corn, the bacterium was not able to suppress numbers of P. minor. When comparing the suppression of M. incognita on corn in natural and steam-heated soil, egg production by the nematode was suppressed in natural compared to steamed soil, but the presence of Wood1R did not result in additional suppression of the nematodes in the natural soil. These data indicate that P. fluorescens strain Wood1R has the capacity to inhibit some populations of plant-parasitic nematodes. However, consistent suppression of nematodes in natural soils seems unlikely.  相似文献   

12.
With the cancellation of fenamiphos in the near future, alternative nematode management tactics for plant-parasitic nematodes (PPN) on golf courses need to be identified. The use of entomopathogenic nematodes (EPN) has been suggested as one possible alternative. This paper presents the results of 10 experiments evaluating the efficacy of EPN at managing PPN on turfgrasses and improving turf performance. These experiments were conducted at various locations throughout Florida over the course of a decade. In different experiments, different EPN species were tested against different species of PPN. Separate experiments evaluated multiple rates and applications of EPN, compared different EPN species, and compared single EPN species against multiple species of PPN. In a few trials, EPN were associated with reductions in certain plant-parasite species, but in other trials were associated with increases. In most trials, EPN had no effect on plant parasites. Because EPN were so inconsistent in their results, we conclude that EPN are not acceptable alternatives to fenamiphos by most turf managers in Florida at this time.  相似文献   

13.
Algal extracts were ineffective against Meloidogyne spp., Panagrellus redivivus, and Neoaplectana carpocapsae at 1.0% aqueous concentrations, with the exception of Spatoglossum schroederi. S. schroederi killed Meloidogyne incognita, M. javanica, M. acrita, and Hoplolaimus galeatus at concentrations of 1.0, 0.75, and 0.50%. Extracts from S. schroederi at a concentration of 1.0% were ineffective against Hirschmanniella caudacrena and Belonolaimus longicaudatus. Spatoglossum schroederi, Botryocladia occidentalis, and Bryothamnion triquestrum when used as soil amendments at 0.5-1.0% concentrations (by weight) produced significant reduction of root gall development in tomato plants infected with M. incognita. Tomato plant growth was significantly improved by these algae, as well as by Caulerpa prolifera. Soil amendments of S. schroederi at concentrations of 0.5 and 1.0% significantly reduced root galling of tomato infected with M. incognita, M. arenaria, and M. javanica. Tomatoes grown in algal-soil mixture produced significantly heavier shoots and roots than plants raised in autoclaved soil. No significant differences in root-knot indices, nor in fresh and dry weights of tomato, were noted between the two concentrations of algal-soil mixture.  相似文献   

14.
Belonolaimus longicaudatus has been reported as damaging both potato (Solanum tuberosum) and cotton (Gossypium hirsutum). These crops are not normally grown in cropping systems together in areas where the soil is infested with B. longicaudatus. During the 1990s cotton was grown in a potato production region that was a suitable habitat for B. longicaudatus. It was not known how integrating the production of these two crops by rotation or double-cropping would affect the population densities of B. longicaudatus, other plant-parasitic nematodes common in the region, or crop yields. A 3-year field study evaluated the viability of both crops in monocropping, rotation, and double-cropping systems. Viability was evaluated using effects on population densities of plant-parasitic nematodes and yields. Rotation of cotton with potato was found to decrease population densities of B. longicaudatus and Meloidogyne incognita in comparison with continuous potato. Population densities of B. longicaudatus following double-cropping were greater than following continuous cotton. Yields of both potato and cotton in rotation were equivalent to either crop in monocropping. Yields of both crops were lower following double-cropping when nematicides were not used.  相似文献   

15.
Twenty-one species of plant-parasitic nematodes were recovered from 15 sites in the Kalsow Prairie, Iowa. Nematode communities were analyzed by prominence and importance values of the nematode species and also by diversity and concentration of dominance. The use of numbers and biomass were compared in indices of diversity and concentration of dominance. Tylenchorhynchus maximns ranked first in mean density/site, prominence value, and importance value, although it was not found as frequently as many other nematodes. Xiphinema americanum and T. maximus were among the dominant nematodes in 11 of 15 sites when biomass was used in the concentration-of-dominance index, but they were dominant in only five sites when numbers were used.  相似文献   

16.
Growing cotton in a greenhouse with 12-h of supplemental light [8,608 lux (800 ft-c) from combination of mercury and Lucalux® lamps] resulted in 2 × to > 3 × greater reproduction of Meloidogyne incognita and Belonolaimus longicaudatus as compared to natural light alone. Rate of increase of Hoplolaimus galeatus was affected little in this experiment. In a second experiment under controlled conditions in a phytotron, light source and intensity had greater influence on the reproduction of Heterodera glycines and Pratylenchus penetrans on soybean than on B. longicaudatus. Fluorescent plus incandescent and metal halide light sources resulted in the greatest nematode reproduction. Lucalux lamps resulted in much lower rates of nematode increase than other light sources. Rates of nematode increase on soybean under the different light sources in the phytotron generally were positively related to plant growth.  相似文献   

17.
Sunn hemp (SH), Crotolaria juncea, is known to suppress Rotylenchulus reniformis and weeds while enhancing free-living nematodes involved in nutrient cycling. Field trials were conducted in 2009 (Trial I) and 2010 (Trial II) to examine if SH cover cropping could suppress R. reniformis and weeds while enhancing free-living nematodes if integrated with soil solarization (SOL). Cover cropping of SH, soil solarization, and SH followed by SOL (SHSOL) were compared to weedy fallow control (C). Rotylenchulus reniformis population was suppressed by SHSOL at the end of cover cropping or solarization period (Pi) in Trial I, but not in Trial II. However, SOL and SHSOL did not suppress R. reniformis compared to SH in either trial. SH enhanced abundance of bacterivores and suppressed the % herbivores only at Pi in Trial II. At termination of the experiment, SH resulted in a higher enrichment index indicating greater soil nutrient availability, and a higher structure index indicating a less disturbed nematode community compared to C. SOL suppressed bacterivores and fungivores only in Trial II but not in Trial I. On the other hand, SHSOL enhanced bacterivores and fungivores only at Pi in Trial I. Weeds were suppressed by SH, SOL and SHSOL throughout the experiment. SHSOL suppressed R. reniformis and enhanced free-living nematodes better than SOL, and suppressed weeds better than SH.  相似文献   

18.
Seasonal fluctuations in field populations of Meloidogyne incognita, Pratylenchus zeae, P. brachyurus, Criconemoides ornatus, Trichodorus christiei, and Helicotylenchus dihystera on monocultured corn, cotton, peanut, and soybean were determined monthly for 4 yr. Population densities of M. incognita were greater in corn and cotton plots than in peanut and soybean plots from July until January. Those of Pratylenchus spp. were greater on corn and soybean than on cotton and peanut during all months except May and June. C. ornatus populations were greater on corn and peanut than on cotton and soybean during all months. C. ornatus on corn and peanut was more numerous in July than in other months. There was no significant increase in populations of T. christiei, except on corn in June. H. dihystera was greater in cotton and soybean plots than in corn and peanut plots from August through December.  相似文献   

19.
The influence of herbicides and mono- and multicropping sequences on population densities of nematode species common in corn, cotton, peanut, and soybean fields in the southeastern United States was studied for 4 years. Each experimental plot was sampled at monthly intervals. The application of herbicides did not significantly affect nematode population densities. Meloidogyne incognita and Trichodorus christiei increased rapidly on corn and cotton, but were suppressed by peanut and soybean. More Pratylenchus spp. occurred on corn and soybean than on cotton and peanut. Criconemoides ornatus increased rapidly on corn and peanut, but was suppressed by cotton and soybean. Helicotylenchus dihystera was more numerous on cotton and soybean than on corn and peanut. Numbers of Xiphinema americanum remained low on all crops. The peanut sequence was the most effective monocrop system for suppressing most nematode species. Multi-crop systems, corn-peanut-cotton-soybean and cotton-soybean-corn-peanut, were equally effective in suppressing nematode densities.  相似文献   

20.
A survey was conducted to determine the assemblage and abundance of plant-parasitic nematodes and their associations with soil factors in organically farmed fields in Minnesota. A total of 31 soil samples were collected from southeast (SE), 26 samples from southwest (SW), 28 from west-central (WC), and 23 from northwest (NW) Minnesota. The assemblage and abundance of plant-parasitic nematodes varied among the four regions. The soybean cyst nematode, Heterodera glycines, the most destructive pathogen of soybean, was detected in 45.2, 88.5, 10.7, and 0% of organically farmed fields with relative prominence (RP) values of 10.3, 26.5, 0.6, and 0 in the SE, SW, WC, and NW regions, respectively. Across the four regions, other common genera of plant-parasitic nematodes were Helicotylenchus (42.6, RP value, same below), Pratylenchus (26.9), Tylenchorhynchus and related genera (9.4), Xiphinema (5.6), and Paratylenchus (5.3). Aphelenchoides, Meloidogyne, Hoplolaimus, Mesocriconema, and Trichodorus were also detected at low frequencies and/or low population densities. The similarity index of plant-parasitic nematodes between two regions ranged from 0.44 to 0.71 and the similarity increased with decreasing distance between regions. The densities of most plant-parasitic nematodes did not correlate with measured soil factors (organic matter, pH, texture). However, the densities of Pratylenchus correlated negatively with % sand, and Xiphinema was correlated negatively with soil pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号