首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 15 毫秒
1.
2.
《Current biology : CB》2023,33(2):263-275.e4
  1. Download : Download high-res image (119KB)
  2. Download : Download full-size image
  相似文献   

3.
Programmed cell death constitutes a common fundamental incident occurring during oogenesis in a variety of different organisms. In Drosophila melanogaster, it plays a significant role in the maturation process of the egg chamber. In the present study, we have used an in vitro development system for studying the effects of inducers and inhibitors of programmed cell death during the late stages of oogenesis. Treatment of the developing egg chambers with two widely used inducers of cell death, etoposide and staurosporine, blocks further development and induces chromatin condensation but not DNA fragmentation in nurse and follicle cells, as revealed by propidium iodide staining and terminal transferase-mediated dUTP nick-end labeling assay. Moreover, incubation of the developing egg chambers with the caspase-3 inhibitor Z-DEVD-FMK significantly delays development, prevents DNA fragmentation, but does not affect chromatin condensation. The above results demonstrate, for the first time, that chromatin condensation in Drosophila ovarian nurse and follicle cells is a caspase-3-like independent process and is regulated independently from DNA fragmentation.  相似文献   

4.
Analysis of the mechanisms that control epithelial polarization has revealed that cues for polarization are mediated by transmembrane proteins that operate at the apical, lateral, or basal surface of epithelial cells. Whereas for any given epithelial cell type only one or two polarization systems have been identified to date, we report here that the follicular epithelium in Drosophila ovaries uses three different polarization mechanisms, each operating at one of the three main epithelial surface domains. The follicular epithelium arises through a mesenchymal-epithelial transition. Contact with the basement membrane provides an initial polarization cue that leads to the formation of a basal membrane domain. Moreover, we use mosaic analysis to show that Crumbs (Crb) is required for the formation and maintenance of the follicular epithelium. Crb localizes to the apical membrane of follicle cells that is in contact with germline cells. Contact to the germline is required for the accumulation of Crb in follicle cells. Discs Lost (Dlt), a cytoplasmic PDZ domain protein that was shown to interact with the cytoplasmic tail of Crb, overlaps precisely in its distribution with Crb, as shown by immunoelectron microscopy. Crb localization depends on Dlt, whereas Dlt uses Crb-dependent and -independent mechanisms for apical targeting. Finally, we show that the cadherin-catenin complex is not required for the formation of the follicular epithelium, but only for its maintenance. Loss of cadherin-based adherens junctions caused by armadillo (beta-catenin) mutations results in a disruption of the lateral spectrin and actin cytoskeleton. Also Crb and the apical spectrin cytoskeleton are lost from armadillo mutant follicle cells. Together with previous data showing that Crb is required for the formation of a zonula adherens, these findings indicate a mutual dependency of apical and lateral polarization mechanisms.  相似文献   

5.
Cadmium (Cd) transport in alveolar type II (ATII) cells has been studied using two in vitro models widely used to investigate lung function: primary cultures of rat ATII cells and the human cell line A549. Nonlinear regression analyses of the uptake time-course of 109Cd revealed: a zero-time accumulation, a fast process of accumulation which proceeds within minutes, and a much slower process which takes hours. This three-step mechanism was characterized by different parameter values under dishes-or filter-growth conditions. A higher initial uptake rate (vi) and equilibrium accumulation (Amax) of 109Cd were found in the rat ATII cells; these differences were not related to a higher level of adsorption onto the external surface of the cell membrane. Specific transport systems of similar capacity but different affinity (threefold higher in rat cells) were characterized. A significant transepithelial transport of 109Cd, with similar Pcoeff in both cell models, could not be exclusively related to cellular metal release. Results on 3H-mannitol permeability together with 109Cd efflux data strongly suggest a greater contribution of the paracellular pathways in Cd transport through A549 cell monolayers. These differences in transport properties between the two lung cell models may modify the dose-response curve for Cd toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号