首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
''Bonny Best'' tomato plants were grown at 16, 21, or 24 C for 28 d in soil infested with either of two isolates of Fusarium oxysporum f. sp. lycopersici race 1 and Meloidogyne incognita. Significant levels of fusarium wilt occurred at all temperatures including 16 C, which has not been reported previously. One Fusarium isolate resulted in the highest levels of disease incidence at 21 and 24 C in the presence of root-knot nematodes, and at 24 C when the nematodes were not present. At 16 C there was no significant difference in the number of plants infected by the second Fusarium isolate alone or in combination with root knot nematodes, although the presence of nematodes resulted in a significant increase in the percentage of disease occurrence and vessel infection at 21 C.  相似文献   

2.
Wilt-susceptible cultivar ''Rowden'' cotton was inoculated wilh Meloidogyne incognita (N), Trichoderma harzianum (T), and Fusarium oxysporum f. sp. vasinfectum (F) alone and in all combinations in various time sequences. Plants inoculated with F alone or in combination with T did not develop wilt, Simultaneous inoculation of 7-day-old seedlings with all three organisms (NTF) produced earliest wilt. However, plants receiving nematodes at 7 days and Fusarium and Trichoderma at 2 or 4 weeks later (N-T-F, N-TF) developed the greatest wilt between 49-84 days after initial nematode inoculation. During the same period, Fusarium added 4 weeks after initial nematode inoculation (N-F) and Fusarium added 4 weeks after initial simultaneous inoculation of nematode and Trichoderma (NT-F) produced the least wilt. The addition of Fusarium inhibited nematode reproduction. Simultaneous inoculation with nematodes and Trichoderma (NT-) resulted in the greatest root gall development, whereas nematodes alone produced the greatest number of larvae. In comparison with noninoculated controls (CK), treatments involving all three organisms inhibited plant growth, plants inoculated with the nematode alone (N-) or with nematodes and Trichoderma (NT-) simultaneously had greatest root weight. Any treatment involving the nematode resulted in fewer bolls per plant and greater necrosis on roots than the noninoculated checks.  相似文献   

3.
Interaction of Meloidogyne javanica and Fusarium oxysporum f. sp. ciceri was studied on Fusarium wilt-susceptible (JG 62 and K 850) and resistant (JG 74 and Avrodhi) chickpea cultivars. In greenhouse experiments, inoculation of M. javanica juveniles prior to F. oxysporum f. sp. ciceri caused greater wilt incidence in susceptible cultivars and induced vascular discoloration in roots of resistant cultivars. Nematode reproduction was greatest (P = 0.05) at 25 °C. Number of galls and percentage of root area galled increased when the temperature was increased from 15 °C to 25 °C. Wilt incidence was greater at 20 °C than at 25 °C. Chlorosis of leaves and vascular discoloration of plants did not occur at 15 °C. The nematode enhanced the wilt incidence in wilt-susceptible cultivars only at 25 °C. Interaction between the two pathogens on shoot and root weights was significant only at 20 °C, and F. o. ciceri suppressed the nematode density at this temperature. Wilt incidence was greater in clayey (48% clay) than in loamy sand (85% sand) soils. The nematode caused greater plant damage on loamy sand than on clayey soil. Fusarium wilt resistance in Avrodhi and JG 74 was stable in the presence of M. javanica across temperatures and soil types.  相似文献   

4.
Growth of alfalfa (Medicago sativa cv. Vernal) seedlings was compared after inoculation with combinations of either Pratylenchus penetrans and Fusarium soloni or P. penetrans and F. oxysporum f. sp. medicaginis. A synergistic disease interaction occurred in alfalfa when F. oxysporum and P. penetrans were added simultaneously to the soil. Alfalfa growth was suppressed at all inoculum levels of P. penetrans and F. oxysporum, but not with F. solani. Seedlings inoculated with the nematode alone gave lower yields than when inoculated with either Fusarium species alone. Fusarium oxysporum, but not F. solani, was pathogenic to alfalfa under similar experimental conditions. Fusarium oxysporum did not alter the populations of P. penetrans in alfalfa roots, whereas the presence of F. solani was associated with a diminished number of P. penetrans in the roots.  相似文献   

5.
Isoperoxidases were detected in resistant Rossol and susceptible Roma VF tomato roots uninfected and infected by Meloidogyne incognita. Syringaldazine, guaiacol, p-phenylenediamine-pyrocatechol (PPD-PC), and indoleacetic acid (IAA) were used as substrates, and the corresponding peroxidative activities were detected either in cytoplasmic or in cell wall fractions, except for IAA oxidase, which was measured in soluble and microsomal fractions. Isoperoxidase activities and cellular locations were induced differently in resistant and susceptible cultivars by nematodes. Nematode infestation markedly enhanced syringaldazine oxidase activity in cell walls of the resistant cultivar. This isoperoxidase is involved in the last step of lignin deposition in plants. Conversely, the susceptible cultivar reacted to M. incognita infection with an increase in cytoplasmic PPD-PC oxidase activity, which presumedly is involved in ethylene production; no changes in cell wall isoperoxidases were observed. IAA oxidase was inhibited in susceptible plants after nematode inoculation, whereas in resistant plants this activity increased in the soluble fraction and decreased in the microsomal fraction.  相似文献   

6.
7.
In autoclaved greenhouse soil without Fusarium oxysporum f. sp. vasinfectum, Meloidogyne incognita did not cause leaf or vascular discoloration of 59-day-old cotton plants. Plants had root galls with as few as 50 Meloidogyne larvae per plant. Root galling was directly proportional to the initial nematode population level. Fusarium wilt symptoms occurred without nematodes with 77,000 fungus propagules or more per gram of soil. As few as 50 Meloidogyne larvae accompanying 650 fungus propagules caused Fusarium wilt. With few exceptions, leaf symptoms appeared sooner as numbers of either or both organisms increased. In soils infested with both organisms, the extent of fungal invasion and colonization was well correlated with the extent of nematode galling and other indications of the Fusarium wilt syndrome.  相似文献   

8.
Callus cultures derived from isogenic lines of the tomato cultivars Moneymaker and Craigella, resistant or susceptible to F. oxysporum f. sp. lycopersici, were inoculated with Fusarium oxysporum f. sp. lycopersici race 1. Fungal growth was restricted on callus derived from resistant plants, after inoculation with a conidial suspension, whereas callus derived from susceptible plants was totally overgrown by the fungus within 7 days. The concentration of the phytoalexin rishitin was significantly higher in the callus culture derived from a resistant tomato line compared with the callus culture from a susceptible line, 2 and 3 days after inoculation with mycelium. The results of the experiments were compared with experiments with whole plants. Rishitin production as well as growth of the fungus was comparable with responses in plant-fungus interaction. Therefore callus culture may be useful in studying the interaction between tomato plants and race 1 of F. oxysporum f. sp. lycopersici.  相似文献   

9.
In greenhouse experiments, broadleaf tobacco plants were inoculated with tobacco cyst (Globodera tabacum tabacum) or root-knot (Meloidogyne hapla) nematodes 3, 2, or 1 week before or at the same time as Fusarium oxysporum. Plants infected with nematodes prior to fungal inoculation had greater Fusarium wilt incidence and severity than those simultaneously inoculated. G. t. tabacum increased wilt incidence and severity more than did M. hapla. Mechanical root wounding within 1 week of F. oxysporum inoculation increased wilt severity. In field experiments, early-season G. t. tabacum control by preplant soil application of oxamyl indirectly limited the incidence and severity of wilt. Wilt incidence was 48%, 23%, and 8% in 1989 and 64%, 60%, and 19% in 1990 for 0.0, 2.2, and 6.7 kg oxamyl/ha, respectively. Early infection of tobacco by G. t. tabacum predisposed broadleaf tobacco to wilt by F. oxysporum.  相似文献   

10.
The interaction between vesicular-arbuscular mycorrhizal (VAM) fungi and the root-knot nematode (Meloidogyne hapla) was investigated using both nematode-susceptible (Grasslands Wairau) and nematode-resistant (Nevada Synthetic XX) cultivars of alfalfa (Medicago sativa) at four levels of applied phosphate. Mycorrhizal inoculation improved plant growth and reduced nematode numbers and adult development in roots in dually infected cultures of the susceptible cultivar. The tolerance of plants to nematode infection and development when preinfected with mycorrhizal fungi was no greater than when they were inoculated with nematodes and mycorrhizal fungi simultaneously. Growth of plants of the resistant cultivar was unaffected by nematode inoculation but was improved by mycorrhizal inoculation. Numbers of nematode juveniles were lower in the roots of the resistant than of the susceptible cultivar and were further reduced by mycorrhizal inoculation, although no adult nematodes developed in any resistant cultivar treatment. Inoculation of alfalfa with VAM fungi increased the tolerance and resistance of a cultivar susceptible to M. hapla and improved the resistance of a resistant cultivar.  相似文献   

11.

Background and aims

Strawberry (Fragaria x ananassa) is a high-value crop worldwide. Fusarium oxysporum f. sp. fragariae causes rapid wilting and death of strawberry plants and severe economic losses worldwide. To date, no studies have been conducted to determine colonisation of either susceptible or resistant strawberry plants by F. oxysporum f. sp. fragariae, or whether plant colonisation by F. oxysporum f. sp. fragariae differs between susceptible and resistant cultivars.

Methods

Colonisation of strawberry plants by a pathogenic isolate of F. oxysporum f. sp. fragariae was examined both on the root surface and within root tissue of one resistant cv. Festival and one susceptible cv. Camarosa using light and scanning electron microscopy from 4?h to 7?d post inoculation (pi).

Results

Resistant cv. Festival significantly impeded the spore germination and penetration from 4 to 12 hpi and subsequent growth and colonisation by this pathogen until 7 dpi compared with susceptible cv. Camarosa. At 7 dpi, fungal colonisation in resistant cv. Festival remained mainly confined to the epidermal layer of the root, while in susceptible cv. Camarosa, hyphae not only had heavily colonised the cortical tissue throughout but had also colonised vascular tissues.

Conclusions

This study demonstrates for the first time that resistance of a strawberry cultivar to F. oxysporum f. sp. fragariae is a result of impedance of pathogen growth and colonisation both on the plant surface and within host tissues. Resistance mechanisms identified in this study will be of high value for breeding programmes in developing new disease-resistant cultivars to manage this serious strawberry disorder.  相似文献   

12.
Seedlings of Meloidogyne incognita-resistant (N.C. 95) and -susceptible (McNair 30) tobacco cultivars were grown aseptically for 55 days inside isolator chambers in autoclaved soil infested with 0 or 3,000 axenized eggs of M. im ognita per 500 cc of soil. Healthy and infected plants were compared. Dry root weights of infected plants of resistant and susceptible cultivars were 16% and 84%, respectively, less than the controls. Sixteen amino acids, including those precursors for nicotine, and nicotine, increased significantly in infected roots of both cultivars. Increases in amino acids in infected roots ranged from 28% for valine to 103% for tyrosine in the resistant N.C. 95, and from 30% for leucine to 148% for tyrosine in lhe susceptible McNair 30. Nicotine content (dry weight basis) increased 42% and 62% in infected roots of resistant and susceptible cultivars, respectively. Nematode infection increased nicotine by 112% in leaves of N.C. 95, and decreased it by 56% in leaves of McNair 30. Root damage by M. incognita probably decreased nicotine movement into leaves of McNair 30. In N.C. 95, nicotine movement into leaves apparently was not adversel b affected due to lack of significant root damage.  相似文献   

13.
Growth and anatomical responses of plants during latent and pathogenic infection by fungal pathogens are not well understood. The interactions between soybean (Glycine max) and two types of the pathogen Phialophora gregata were investigated to determine how plants respond during latent and pathogenic infection. Stems of soybean cultivars with different or no genes for resistance to infection by P. gregata were inoculated with wildtype or GFP and RFP-labeled strains of types A or B of P. gregata. Plants were sectioned during latent and pathogenic infection, examined with transmitted light or fluorescent microscopy, and quantitative differences in vessels and qualitative differences in infection were assessed using captured images. During latent infection, the number of vessels was similar in resistant and susceptible plants infected with type A or B compared to the control, and fungal infection was rarely observed in vessels. During pathogenic infection, the resistant cultivars had 20 to 25% more vessels than the uninfected plants, and fungal hyphae were readily observed in the vessels. Furthermore, during the pathogenic phase in a resistant cultivar, P.gregata type A-GFP was limited to outside of the primary xylem, while P.gregata type B-RFP was observed in the primary xylem. The opposite occurred with the susceptible cultivar, where PgA-GFP was observed in the primary xylem and PgB-RFP was limited to the interfascicular region. In summary, soybean cultivars with resistance to BSR produced more vessels and can restrict or exclude P. gregata from the vascular system compared to susceptible cultivars. Structural resistance mechanisms potentially compensate for loss of vessel function and disrupted water movement.  相似文献   

14.
Rates of nematode penetration and the histopathology of root infections in fluecured tobacco cultivars ''McNair-944,'' ''Speight G-28,'' and ''NC-89'' with either Meloidogyne arenaria, M. incognita, M. hapla, or M. javanica were investigated. Penetration of root tips by juveniles of all species into the M. incognita-resistant NC-89 and G-28 was much less than that on the susceptible McNair-944. Few juveniles of M. incognita were detected in resistant cultivars 7 and 14 days after inoculation. Infection sites exhibited some cavities and extensive necrotic tissue at 14 days; less necrotic tissue and no intact nematodes were observed 35 days after inoculation. Although some females of M. arenaria reached maturity and produced eggs, considerable necrosis was induced in the resistant cultivars. Meloidogyne hapla and M. javanica developed on all cultivars, but there was necrotic tissue at some infection sites in the resistant cultivars. The occurrence of single multistructured nuclei in the syncytia of most M. hapla infections differed from the numerous small nuclei found in syncytia caused by the other three species.  相似文献   

15.
Ditylenchus dipsaci and Fusarium oxysporum f. sp. medicaginis synergistically affected the mortality and plant growth of Ranger alfalfa, a cultivar susceptible to stem nematode and Fusarium wilt. The nematode-fungus relationship had an additive effect on mortality and plant growth of Lahontan (nematode resistant and Fusarium wilt susceptible) and of Moapa 69 (nematode susceptible and Fusarium wilt resistant). Mortality rates were 13, 16, 46, and 49% for Ranger; 4, 18, 26, and 28% for Lahontan; and 19, 10, 32, and 30% for Moapa 69 inoculated with D. dipsaci, F. oxysporum f. sp. medicaginis, and simultaneously and sequentially with D. dipsaci and F. oxysporum f. sp. medicaginis, respectively. Shoot weights as a percentage of uninoculated controls for the same treatments were 52, 84, 26, and 28%, for Ranger; 74, 86, 64, and 64% for Lahontan; and 50, 95, 44, and 39% for Moapa 69. Plant growth suppression was related to vascular bundle infection and discoloration of alfalfa root tissue. Disease severity and plant growth of alfalfa did not differ with simultaneous or sequential inoculations of the two pathogens. Fusarium oxysporum f. sp. medicaginis affected alfalfa growth but not nematode reproduction.  相似文献   

16.
Benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH), a synthetic chemical, was applied as a foliar spray to tomato (Lycopersicon esculentum) plants and evaluated for its potential to confer increased resistance against the soil-borne pathogen Fusarium oxysporum f. sp. radicis-lycopersici (FORL). In nontreated tomato plants all root tissues were massively colonized by FORL hyphae. Pathogen ingress toward the vascular stele was accompanied by severe host cell alterations, including cell wall breakdown. In BTH-treated plants striking differences in the rate and extent of fungal colonization were observed. Pathogen growth was restricted to the epidermis and the outer cortex, and fungal ingress was apparently halted by the formation of callose-enriched wall appositions at sites of fungal penetration. In addition, aggregated deposits, which frequently established close contact with the invading hyphae, accumulated in densely colonized epidermal cells and filled most intercellular spaces. Upon incubation of sections with gold-complexed laccase for localization of phenolic-like compounds, a slight deposition of gold particles was observed over both the host cell walls and the wall appositions. Labeling was also detected over the walls of fungal cells showing signs of obvious alteration ranging from cytoplasm disorganization to protoplasm retraction. We provide evidence that foliar applications of BTH sensitize susceptible tomato plants to react more rapidly and more efficiently to FORL attack through the formation of protective layers at sites of potential fungal entry.  相似文献   

17.
Changes of β-1,3-glucanase, chitinase, β-1,4-glucosidase and N-acetylglucosaminidase activity have been investigated in relation to the development of symptoms and colonization by the pathogen in roots, stems and leaves of susceptible (‘Improved, Pearson’) and resistant (‘Improved Pearson VF11’) tomato plants infected by Fusarium oxysporum f. sp. lycopersici. Glycosidase activities increased after inoculation to different extents depending on the plant part and cultivar. Increases were always higher in susceptible than in resistant plants. Changes in the β-1,3-glucanase activity after inoculation were particularly large in stems of infected plants. In contrast, chitinase activity increased more in roots than in stems. The β-1,3-glucosidase and chitinase activity decreased slightly from the basal to the apical third of stems. The trend of changes of the glycosidase activity generally were well related with the severity of disease symptoms and the fungal colonization of basal stem segments. There was no evidence that the increase of glycosidase activity after the infection was directly related with the resistance to Fusarium wilt in tomato.  相似文献   

18.
Four bean genotypes (IPA-1, A-107, A-211, and Calima), representing all possible combinations of resistance and susceptibility to Fusarium oxysporum f. sp. phaseoli (Fop) and Meloidogyne incognita, were each inoculated with three population densities of these pathogens. Calima and A-107 were resistant to Fop; A-107 and A-211 were resistant to M. incognita; and IPA-1 was susceptible to both pathogens. In Fop-susceptible lines (IPA-1 and A-211), the presence of M. incognita contributed to an earlier onset and increased severity of Fusarium wilt symptoms and plant stunting. However, the Fop-resistant Calima developed symptoms of Fusarium wilt only in the presence of M. incognita. Genotype A-107 (resistant to both M. incognita and Fop) exhibited Fusarium wilt symptoms and a moderately susceptible reaction to Fop only after the breakdown of its M. incognita resistance by elevated incubation temperatures (27 C). Root galling and reproduction of M. incognita was generally increased as inoculum density of M. incognita was increased on the M. incognita susceptible cultivars. However, these factors were decreased as the inoculum density of Fop was increased. It was concluded that severe infections of bean roots by M. incognita increase the severity of Fusarium wilt on Fop-susceptible genotypes and may modify the resistant reaction to Fop.  相似文献   

19.
20.
Histochemical study of cabbage roots axenically parasitized by Pratylenchus penetrans revealed a five-fold increase in peroxidase activity (localized near lesions), pectic xylem plugs (resembling those caused by Fusarium), and accumulation of oxidase-mediated polyphenols in the region of mechanical injury. Fusarium-resistant cabbage was more susceptible to Pratylenchus than the Fusariunt-susceptible varieties, particularly in the formation of oxidized phenolic compounds. Of 13 fluorescent compounds detected by paper chromatography, one major spot was found to be ferulic acid and a minor one, catechin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号