共查询到20条相似文献,搜索用时 15 毫秒
1.
Lysophosphatidic acid (LPA) mediates a variety of biological functions via the binding of G protein-coupled LPA receptors (LPA receptor-1 (LPA 1) to LPA 6). This study aimed to investigate the roles of LPA 2 and LPA 3 in the modulation of chemoresistance to anticancer drug in lung cancer A549 cells. In cell survival assay, cells were treated with cisplatin (CDDP) every 24 h for 2 days. The cell survival rate to CDDP of A549 cells was significantly elevated by an LPA 2 agonist, GRI-977143. To evaluate the roles of LPA 2-mediated signaling in cell survival during tumor progression, highly migratory (A549-R10) cells were generated from A549 cells. In the presence of GRI-977143, the cell survival rate to CDDP of A549-R10 cells were markedly higher than that of A549 cells, correlating with LPAR2 expression level. Moreover, to assess the effects of long-term anticancer drug treatment on cell survival, the long-term CDDP treated (A549-CDDP) cells were established from A549 cells. The cell survival rate to CDDP of A549-CDDP cells was elevated by GRI-977143. Since LPAR3 expression level was significantly higher in A549-CDDP cells than in A549 cells, we investigated the roles of LPA 3 in the cell survival to CDDP of A549 cells, using an LPA 3 agonist, 1-oleoyl-2-methyl- sn-glycero-3-phosphothionate ((2 S)-OMPT). The cell survival rate to CDDP of A549 cells was significantly reduced by (2 S)-OMPT treatment. In the presence of (2 S)-OMPT, the cell survival rate to CDDP of A549 cells was elevated by LPA 3 knockdown. These results suggest that LPA signaling via LPA 2 and LPA 3 is involved in the regulation of chemoresistance in A549 cells treated with CDDP. 相似文献
3.
Cytokines and growth factors in malignant ascites are thought to modulate a variety of cellular activities of cancer cells and normal host cells. The motility of cancer cells is an especially important activity for invasion and metastasis. Here, we examined the components in ascites, which are responsible for cell motility, from patients and cancer cell-injected mice. Ascites remarkably stimulated the migration of pancreatic cancer cells. This response was inhibited or abolished by pertussis toxin, monoglyceride lipase, an enzyme hydrolyzing lysophosphatidic acid (LPA), and Ki16425 and VPC12249, antagonists for LPA receptors (LPA1 and LPA3), but not by an LPA3-selective antagonist. These agents also inhibited the response to LPA but not to the epidermal growth factor. In malignant ascites, LPA is present at a high level, which can explain the migration activity, and the fractionation study of ascites by lipid extraction and subsequent thin-layer chromatography indicated LPA as an active component. A significant level of LPA1 receptor mRNA is expressed in pancreatic cancer cells with high migration activity to ascites but not in cells with low migration activity. Small interfering RNA against LPA1 receptors specifically inhibited the receptor mRNA expression and abolished the migration response to ascites. These results suggest that LPA is a critical component of ascites for the motility of pancreatic cancer cells and LPA1 receptors may mediate this activity. LPA receptor antagonists including Ki16425 are potential therapeutic drugs against the migration and invasion of cancer cells. 相似文献
4.
LPA (lysophosphatidic acid) is a bioactive phospholipid having diverse effects on various types of tissues. When NMuMG (normal murine mammary gland) cells were cultured in the presence of 0-10 μM LPA, cell numbers were increased by dose dependency for the 6-day culture periods (P<0.05). In DNA synthesis assay, 10 μM LPA induced 4.5-fold more DNA synthesis compared with control (P<0.05). In addition, the cultured cell density in the given area was increased by LPA treatment. MMP (matrix metalloproteinase) inhibitor GM6001 and EGFR [EGF (epidermal growth factor) receptor] tyrosine kinase inhibitor AG1478 [tyrphostin AG1478, 4-(3-chloroanilino)-6,7-dimethoxyquinazoline] significantly decreased LPA-induced DNA synthesis and cell growth without cell death (P<0.05). To test the hypothesis that LPA-induced cell growth is mediated through LPA subtype receptors, LPA subtype receptor gene expressions were amplified by PCR. NMuMG cells expressed LPA1 and LPA2 receptor genes in the presence of 10% FBS (fetal bovine serum). LPA treatments increased ERK1/2 (extracellular-signal-regulated kinase) phosphorylation at 30 min and then dephosphorylated at 2 h after treatment. LPA treatment phosphorylated at tyrosine residues on a variety of Gi and PI3-dependent signal transducers in NMuMG cells. These results suggest that LPA subtype receptors play a role as the active transactivator of EGFR-associated kinases as well as direct growth regulator in mammary tissues. 相似文献
5.
Lysophosphatidic acid (LPA) signaling via LPA receptors (LPA1 to LPA6) exhibits a variety of malignant properties in cancer cells. Intracellular ATP depletion leads to the development of necrosis and apoptosis. The present study aimed to evaluate the effects of LPA receptor-mediated signaling on the regulation of cancer cell functions associated with ATP reduction. Long-term ethidium bromide (EtBr) treated (MG63-EtBr) cells were established from osteosarcoma MG-63 cells. The intracellular ATP levels of MG63-EtBr cells were significantly lower than that of MG-63 cells. LPAR2, LPAR3, LPAR4 and LPAR6 gene expressions were elevated in MG63-EtBr cells. The cell motile and invasive activities of MG63-EtBr cells were markedly higher than those of MG-63 cells. The cell motile activity of MG-63 cells was increased by LPA4 and LPA6 knockdowns. In cell survival assay, cells were treated with cisplatin (CDDP) every 24 h for 3 days. The cell survival to CDDP of MG63-EtBr cells was lower than that of MG-63 cells. LPA2 knockdown decreased the cell survival to CDDP of MG-63 cells. The cell survival to CDDP of MG-63 cells was inhibited by (2 S)-OMPT (LPA3 agonist). Moreover, the cell survival to CDDP of MG-63 cells was enhanced by LPA4 and LPA6 knockdowns. These results indicate that LPA signaling via LPA receptors is involved in the regulation of cellular functions associated with ATP reduction in MG-63 cells treated with EtBr. 相似文献
6.
Lysophosphatidic acid (LPA) is a simple physiological lipid and exhibits a variety of cellular responses via the activation of G protein-coupled transmembrane LPA receptors (LPA receptor-1 (LPA 1) to LPA 6). The aim of our study was to investigate effects of LPA receptors on soft agar colony formation in colon cancer cells treated with anticancer drugs. DLD1 cells were treated with fluorouracil (5-FU) or cisplatin (CDDP) for at least six months (DLD-5FU and DLD-CDDP cells, respectively). LPAR1 gene expression was markedly elevated in DLD-5FU cells. In contrast, DLD-CDDP cells showed the high expression of LPAR6 gene. In colony formation assay, DLD-5FU cells formed markedly large-sized colonies, while no colony formation was observed in DLD1 and DLD-CDDP cells. The large-sized colonies formed in DLD-5FU cells were suppressed by LPA 1 knockdown. In contrast, LPA 6 knockdown increased the size of colonies. In addition, DLD-5FU cells were further treated with CDDP for three months (DLD-C-F cells). DLD-CDDP cells were also treated with 5-FU (DLD-F-C cells). DLD-C-F cells formed large-sized colonies, but not DLD-F-C cells, correlating with LPAR1 and LPAR6 gene expression levels. These results suggest that LPA 1 and LPA 6 may regulate the colony formation activity in DLD1 cells treated with anticancer drugs. 相似文献
7.
Lysophosphatidic acid (LPA) is a low-molecular-weight lysophospholipid (LPL), which regulates endothelial cells participating in inflammation processes via interactions with endothelial differentiation gene (Edg) family G protein-coupled receptors. In this study, we attempted to determine which LPA receptors mediate the inflammatory response in human endothelial cells. Introduction of siRNA against LPA 1 significantly suppressed LPA-induced ICAM-1 mRNA, total protein, and cell surface expressions, and subsequent U937 monocyte adhesion to LPA-treated human umbilical endothelial cells (HUVECs). By knock down of LPA 1 and LPA 3 in HUVECs, LPA-enhanced IL-1β mRNA expression was significantly attenuated. Moreover, LPA 1 and LPA 3 siRNA also inhibited LPA-enhanced IL-1-dependent long-term IL-8 and MCP-1 mRNA expression, and subsequent THP-1 cell chemotaxis toward LPA-treated HUVEC-conditioned media. These results suggest that the expression of LPA-induced inflammatory response genes is mediated by LPA 1 and LPA 3. Our findings suggest the possible utilization of LPA 1 or LPA 3 as drug targets to treat severe inflammation. 相似文献
8.
Lysophosphatidic acid (LPA), a water-soluble phospholipid, has gained significant attention in recent years since the discovery that it acts as a potent signaling molecule with wide-ranging effects on many different target tissues. There are currently five identified G protein-coupled receptors for LPA and more are undergoing validation. The complexity of the expression pattern and signaling properties of LPA receptors results in multiple influences on developmental, physiological, and pathological processes. This review provides a summary of LPA receptor signaling and current views on the potential involvement of this pathway in human diseases that include cardiovascular, cancer, neuropathic pain, neuropsychiatric disorders, reproductive disorders, and fibrosis. The involvement of LPA signaling in these processes implicates multiple, potential drug targets including LPA receptor subtypes and LPA metabolizing enzymes. Modulation of LPA signaling may thus provide therapeutic inroads for the treatment of human disease. 相似文献
9.
The protease-activated receptor-2 (PAR-2), a G protein-coupled receptor activated by trypsin, contributes to the pathogenesis of inflammatory disease including asthma. Here, we examined the mechanisms by which stimulation of PAR-2 induces an increase in intracellular Ca2+ concentration ([Ca2+]i) in guinea pig tracheal epithelial cells. Trypsin (0.01-3 units/ml) dose-dependently induced a transient increase in [Ca2+]i, the increase being blocked by soybean trypsin inhibitor (SBTI 1 microM). An increase in [Ca2+]i was also induced by an agonist peptide for PAR-2 (SLIGRL-NH2, 0.001-10 microM) but not by thrombin (3 units/ml, an activator for PAR-1, PAR-3 or PAR-4). Repeated or cross stimulation of trypsin or SLIGRL-NH2 caused marked desensitization of the [Ca2+]i response. These responses of [Ca2+]i to trypsin and SLIGRL-NH2 were attenuated by a phospholipase C inhibitor, U-73122, and a Ca2+-ATPase inhibitor, thapsigargin (100 nM), while removal of Ca2+ and a L-type Ca2+-channel blocker, verapamil, were without significant effects. Further, trypsin was without effect on the rate of fura 2 quenching by Mn2+ entry as an indicator of Ca2+ influx. Thus, stimulation of PAR-2 appears to increase [Ca2+]i through the mobilization of Ca2+ from intracellular stores probably via phospholipase Cbeta-linked generation of a second messenger. 相似文献
10.
Lysophosphatidic acid (LPA), a simple bioactive phospholipid, is present in biological fluids such as plasma and bronchoalveolar lavage (BAL). It appears to have both pro- and anti-inflammatory roles in inflammatory lung diseases. Exogenous LPA promotes inflammatory responses by regulating the expression of chemokines, cytokines, and cytokine receptors in lung epithelial cells. In addition to the modulation of inflammatory responses, LPA regulates cytoskeleton rearrangement and confers protection against lung injury by enhancing lung epithelial cell barrier integrity and remodeling. The biological effects of LPA are mediated through its cell surface G-protein coupled LPA 1–7 receptors. The roles of LPA receptors in lung fibrosis, asthma, and acute lung injury have been investigated using genetically engineered LPA receptor deficient mice and there appears to be a definitive role for endogenous LPA and its receptors in the pathogenesis of pulmonary inflammatory diseases. This review summarizes recent reports on the role of LPA and its receptors in the regulation of lung epithelial inflammatory responses and remodeling. This article is part of a Special Issue entitled: Advances in Lysophospholipid Research. 相似文献
11.
During cerebral cortical neurogenesis, neuroblasts in the ventricular zone (VZ) undergo a shape change termed "interkinetic nuclear migration" whereby cells alternate between fusiform and rounded morphologies. We previously identified lp(A1), the first receptor gene for a signaling phospholipid called lysophosphatidic acid (LPA) and showed its enriched expression in the VZ. Here we report that LPA induces changes in neuroblast morphology from fusiform to round in primary culture, accompanied by nuclear movements, and formation of f-actin retraction fibers. These changes are mediated by the activation of the small GTPase, Rho. In explant cultures, where the cerebral cortical architecture remains intact, LPA not only induces cellular and nuclear rounding in the VZ, but also produces an accumulation of rounded nuclei at the ventricular surface. Consistent with a biological role for these responses, utilization of a sensitive and specific bioassay indicates that postmitotic neurons can produce extracellular LPA. These results implicate LPA as a novel factor in cortical neurogenesis and further implicate LPA as an extracellular signal from postmitotic neurons to proliferating neuroblasts. 相似文献
12.
We examined the structure-activity relationship of cloned lysophosphatidic acid (LPA) receptors (endothelial cell differentiation gene (EDG) 2, EDG4, and EDG7) by measuring [Ca(2+)](i) in Sf9 insect cells expressing each receptor using LPA with various acyl chains bound at either the sn-1 or the sn-2 position of the glycerol backbone. For EDG7 the highest reactivity was observed with LPA with Delta9-unsaturated fatty acid (oleic (18:1), linoleic (18:2), and linolenic (18:3)) at sn-2 followed by 2-palmitoleoyl (16:1) and 2-arachidonoyl (20:4) LPA. In contrast, EDG2 and EDG4 showed broad ligand specificities, although EDG2 and EDG4 discriminated between 14:0 (myristoyl) and 16:0 (palmitoyl), and 12:0 (lauroyl) and 14:0 LPAs, respectively. EDG7 recognizes the cis double bond at the Delta9 position of octadecanoyl residues, since 2-elaidoyl (18:1, trans) and 2-petroselinoyl (18:1, cis-Delta12) LPA were poor ligands for EDG7. In conclusion, the present study demonstrates that each LPA receptor can be activated differentially by the LPA species. 相似文献
13.
Lysophosphatidic acid (LPA) protects epithelial and fibroblast cell lines from apoptosis. In B-cells, LPA acts as a growth factor promoting cell proliferation. Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of CD19+/CD5+ B-lymphocytes primarily through a block in apoptosis. The mechanisms underlying this defect are not fully understood. We investigated whether LPA could be a survival factor in CLL cells. Herein, we demonstrate that LPA protects B-cell lines BJAB and I-83 and primary CLL cells but not normal B-cells from fludarabine- and etoposide-induced apoptosis. Furthermore, LPA prevented spontaneous apoptosis in primary CLL cells. The LPA1 expression was found to be increased in primary CLL cells compared with normal B-cells correlating with LPA prevention of apoptosis. Treatment of primary CLL cells with the LPA receptor antagonist, diacylglycerol pyrophosphate, reverses the protective effect of LPA against apoptosis, and down-regulation of the LPA1 by siRNA blocked LPA-mediated protection against spontaneous apoptosis in primary CLL cells. The protective effect of LPA was inhibited by blocking activation of the phosphatidylinositol 3-kinase/AKT signaling pathway. These results indicate that LPA is a survival factor in B-cell lines and primary CLL cells but not normal B-cells. Thus, drugs targeting the LPA receptors might be an effective therapy against B-cell-derived malignancies such as CLL. 相似文献
15.
Lysophosphatidic acid (LPA) exerts multiple biological functions through G protein-coupled receptors (EDG2/LPA(1), EDG4/LPA(2), and EDG7/LPA(3)) and is present in serum where it is associated with albumin. In this study we examined LPA activity in various biological fluids by measuring the LPA-induced increase in the intracellular concentration of calcium ion in three types of Sf9 insect cells, each expressing one of the LPA receptors. Using this system, we found that EDG2 and EDG4, but not EDG7, were activated strongly by addition of incubated plasma. By contrast, LPA detected in seminal plasma, which contains a low concentration of albumin, selectively activated EDG7. After LPA in these samples was extracted and reconstituted, it activated all three receptors. We also found that serum albumin readily inhibits the activation of EDG7 but not the activation of EDG2 or EDG4. In addition, plasma from Nagase analbuminemic rats but not plasma from control Sprague-Dawley rats was found to strongly activate EDG7, although the plasma of these two types of rats contained equal amounts of LPA and activated both EDG2 and EDG4. The present study shows that serum albumin can negatively regulate EDG7 but not EDG2 or EDG4, and suggests that protein factors are present in seminal plasma and deliver LPA efficiently to EDG7 but not to EDG2 or EDG4. 相似文献
16.
Chemotactic migration of fibroblasts toward growth factors relies on their capacity to sense minute extracellular gradients and respond to spatially confined receptor-mediated signals. Currently, mechanisms underlying the gradient sensing of fibroblasts remain poorly understood. Using single-particle tracking methodology, we determined that a lysophosphatidic acid (LPA) gradient induces a spatiotemporally restricted decrease in the mobility of LPA receptor 2 (LPA 2) on chemotactic fibroblasts. The onset of decreased LPA 2 mobility correlates to the spatial recruitment and coupling to LPA 2-interacting proteins that anchor the complex to the cytoskeleton. These localized PDZ motif-mediated macromolecular complexes of LPA 2 trigger a Ca 2+ puff gradient that governs gradient sensing and directional migration in response to LPA. Disruption of the PDZ motif-mediated assembly of the macromolecular complex of LPA 2 disorganizes the gradient of Ca 2+ puffs, disrupts gradient sensing, and reduces the directional migration of fibroblasts toward LPA. Our findings illustrate that the asymmetric macromolecular complex formation of chemoattractant receptors mediates gradient sensing and provides a new mechanistic basis for models to describe gradient sensing of fibroblasts. 相似文献
17.
We show that LPA1 (lysophosphatidic acid receptor-1) is constitutively localized in the nucleus of mammalian cells. LPA1 also traffics from cell membranes to the nucleus in response to LPA (lysophosphatidic acid). Several lines of evidence suggest an important role for cell-matrix interaction in regulating the constitutive nuclear localization of LPA1. First, the RGDS peptide, which blocks cell matrix-induced integrin clustering and cytoskeletal rearrangement, reduced the number of cells containing LPA1 in the nucleus. Secondly, a higher proportion of cells contained nuclear LPA1 when adhesion on fibronectin-coated glass was compared with adherence to polylysine-coated glass. Thirdly, pre-treatment of cells with the Rho kinase inhibitor (Y27632) or the myosin light chain kinase inhibitor (ML9) reduced the number of cells containing nuclear LPA1. The addition of LPA and/or Ki16425 (which binds to LPA1) to isolated nuclei containing LPA1 induced the phosphorylation of several proteins with molecular masses of 34, 32, 14 and 11 kDa. These findings demonstrate that trafficking of LPA1 to the nucleus is influenced by cell-matrix interactions and that nuclear LPA1 may be involved in regulating intranuclear protein phosphorylation and signalling. 相似文献
18.
Lysophosphatidic acid (LPA) acts via binding to specific G protein-coupled receptors and has been implicated in the biology of breast cancer. Here, we characterize LPA receptor expression patterns in common established breast cancer cell lines and their contribution to breast cancer cell motility. By measuring expression of the LPA receptors LPA1, LPA2, and LPA3 with real-time quantitative PCR, we show that the breast cancer cell lines tested can be clustered into three main groups: cells that predominantly express LPA1 (BT-549, Hs578T, MDA-MB-157, MDA-MB-231, and T47D), cells that predominantly express LPA2 (BT-20, MCF-7, MDA-MB-453, and MDA-MB-468), and a third group that shows comparable expression level of these two receptors (MDA-MB-175 and MDA-MB-435). LPA3 expression was detected primarily in MDA-MB-157 cells. Using a Transwell chemotaxis assay to monitor dose response, we find that cells predominantly expressing LPA1 have a peak migration rate at 100 nM LPA that drops off dramatically at 1 µM LPA, whereas cells predominantly expressing LPA2 show the peak migration rate at 1 µM LPA, which remains high at 10 µM. Using BT-20 cells, LPA2-specific small interfering RNA, and C3 exotransferase, we demonstrate that LPA2 can mediate LPA-stimulated cell migration and activation of the small GTPase RhoA. Using LPA2 small interfering RNA, exogenous expression of LPA1, and treatment with Ki16425 LPA receptor antagonist in the BT-20 cells, we further find that LPA1 and LPA2 cooperate to promote LPA-stimulated chemotaxis. In summary, our results suggest that the expression of both LPA1 and LPA2 may contribute to chemotaxis and may permit cells to respond optimally to a wider range of LPA concentrations, thus revealing a new aspect of LPA signaling. G protein-coupled receptor; lysophosphatidic acid; chemotactic migration; GTPase 相似文献
19.
We studied the effect of lysophosphatidic acid (LPA) on collagen gel contraction by cultured rat hepatic stellate cells (HSCs) in association with the function of Rho-kinase, one of the target molecules of small GTPase Rho. Binding studies showed a single class-binding site of LPA on HSCs. LPA enhanced the contraction of a collagen lattice seeded with HSCs. LPA increased the number of HSCs with polygonal morphology that contained actin stress fibers, and enhanced the phosphorylation of myosin light chain and the assembly of focal adhesion kinase and RhoA around fibronectin-coated beads seeded on HSCs. The electric cell-substrate impedance sensor system showed that LPA enhanced adhesion of HSC to extracellular substrate. All the effects of LPA were suppressed by Y-27632, Rho-kinase inhibitor. These data support the notion that LPA is involved in modulating HSC morphology, its attachment to surrounding extracellular matrix and its contraction by a mechanism involving Rho-kinase. 相似文献
|