首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The plant cell wall, a dynamic network of polysaccharides and glycoproteins of significant compositional and structural complexity, functions in plant growth, development and stress responses. In recent years, the existence of plant cell wall integrity (CWI) maintenance mechanisms has been demonstrated, but little is known about the signaling pathways involved, or their components. Examination of key mutants has shed light on the relationships between cell wall remodeling and plant cell responses, indicating a central role for the regulatory network that monitors and controls cell wall performance and integrity. In this review, we present a short overview of cell wall composition and discuss post-synthetic cell wall modification as a valuable approach for studying CWI perception and signaling pathways.  相似文献   

2.
All plant cells are encased in primary cell walls that determine plant morphology, but also protect the cells against the environment. Certain cells also produce a secondary wall that supports mechanically demanding processes, such as maintaining plant body stature and water transport inside plants. Both these walls are primarily composed of polysaccharides that are arranged in certain patterns to support cell functions. A key requisite for patterned cell walls is the arrangement of cortical microtubules that may direct the delivery of wall polymers and/or cell wall producing enzymes to certain plasma membrane locations. Microtubules also steer the synthesis of cellulose—the load-bearing structure in cell walls—at the plasma membrane. The organization and behaviour of the microtubule array are thus of fundamental importance to cell wall patterns. These aspects are controlled by the coordinated effort of small GTPases that probably coordinate a Turing''s reaction–diffusion mechanism to drive microtubule patterns. Here, we give an overview on how wall patterns form in the water-transporting xylem vessels of plants. We discuss systems that have been used to dissect mechanisms that underpin the xylem wall patterns, emphasizing the VND6 and VND7 inducible systems, and outline challenges that lay ahead in this field.  相似文献   

3.
The architecture of the plant cell wall is highly dynamic, being substantially re‐modeled during growth and development. Cell walls determine the size and shape of cells and contribute to the functional specialization of tissues and organs. Beyond the physiological dynamics, the wall structure undergoes changes upon biotic or abiotic stresses. In this review several cell wall traits, mainly related to pectin, one of the major matrix components, will be discussed in relation to plant development, immunity and industrial bioconversion of biomass, especially for energy production. Plant cell walls are a source of oligosaccharide fragments with a signaling function for both development and immunity. Sensing cell wall damage, sometimes through the perception of released damage‐associated molecular patterns (DAMPs), is crucial for some developmental and immunity responses. Methodological advances that are expected to deepen our knowledge of cell wall (CW) biology will also be presented.  相似文献   

4.
细胞壁作为植物细胞重要的组成部分,在决定细胞形状、维持机械支撑、吸收养分等方面发挥重要功能.因此,揭示植物细胞壁合成的调控机制具有重大的生物学意义.基于植物组织水平研究细胞壁的生物合成具有难以控制时间尺度、观察空间狭小等局限性.原生质体作为去除细胞壁的单个细胞是研究细胞壁再生的理想系统.在过去的几十年里报道了大量关于植...  相似文献   

5.

Background

Plant cell walls form the interface between the cells and their environment. They perform different functions, such as protecting cells from biotic and abiotic stress and providing structural support during development. Maintenance of the functional integrity of cell walls during these different processes is a prerequisite that enables the walls to perform their particular functions. The available evidence suggests that an integrity maintenance mechanism exists in plants that is capable of both detecting wall integrity impairment caused by cell wall damage and initiating compensatory responses to maintain functional integrity. The responses involve 1-aminocyclopropane-1-carboxylic acid (ACC), jasmonic acid, reactive oxygen species and calcium-based signal transduction cascades as well as the production of lignin and other cell wall components. Experimental evidence implicates clearly different signalling molecules, but knowledge regarding contributions of receptor-like kinases to this process is less clear. Different receptor-like kinase families have been considered as possible sensors for perception of cell wall damage; however, strong experimental evidence that provides insights into functioning exists for very few kinases.

Scope and Conclusions

This review examines the involvement of cell wall integrity maintenance in different biological processes, defines what constitutes plant cell wall damage that impairs functional integrity, clarifies which stimulus perception and signal transduction mechanisms are required for integrity maintenance and assesses the available evidence regarding the functions of receptor-like kinases during cell wall integrity maintenance. The review concludes by discussing how the plant cell wall integrity maintenance mechanism could form an essential component of biotic stress responses and of plant development, functions that have not been fully recognized to date.  相似文献   

6.
Nonaqueous titration was used for detection of free amino groups in the polymeric matrix of plant cell walls. The content of amino groups varied in the range 0.54–0.91 and total nitrogen in the range 1.0–4.2 mmol per gram dry mass of cell walls depending on the plant species. However, these data on the high content of free amino groups do not correlate with the present day concept that the nitrogen fraction in charged amino groups in plant cell wall proteins, which are assumed to be mainly amino groups of lysine and arginine residues, is about 10%. It is supposed that most detected free amino groups belong to the hydroxy-amino acids hydroxyproline and tyrosine that can be bound at the hydroxyl group with the carbohydrate part of glycoprotein or another structural cell wall polymer.  相似文献   

7.
Expansins in Plant Growth and Development: an Update on an Emerging Topic   总被引:4,自引:0,他引:4  
Abstract: Expansins are a class of proteins identified by their ability to induce the extension of isolated plant cell walls. Expansins are encoded by an extensive multigene family in higher plants, several members of which have been shown to be expressed in a tissue-specific manner. Besides playing an apparently key role in wall expansion, and hence in cell growth, expansins have been implicated in an increasing number of processes during plant growth and development. These include: leaf organogenesis, fruit softening, and wall disassembly. A second class of closely related proteins (referred to as β-expansins) has been identified. Other recent advances in expansin research include the recovery of transgenic plants with altered level of expansins, and the production of recombinant expansins in het-erologous expression systems.  相似文献   

8.
Summary— Polyclonal antibodies directed against α, l -1.2-arabinofuranosyl poly-β,d -1.4-xylopyranosyl (degree of polymerization 130) have been raised from rabbits. The immunogold labelling in transmission electron microscopy (TEM) evidenced the arabinoxylans of the plant cell walls. Comparison between the stems of normal and mutant bm3 maize demonstrated a greater accessibility of arabinoxylans in the walls of the mutant maize. The method, specific and swift, allows us to specify the repartition in the different parts of the stem: sclerenchyma, fibers, parenchyma.  相似文献   

9.
The cell wall provides external support of the plant cells, while the cytoskeletons including the microtubules and the actin filaments constitute an internal framework. The cytoskeletons contribute to the cell wall biosynthesis by spatially and temporarily regulating the transportation and deposition of cell wall components. This tight control is achieved by the dynamic behavior of the cytoskeletons, but also through the tethering of these structures to the plasma membrane. This tethering may also extend beyond the plasma membrane and impact on the cell wall, possibly in the form of a feedback loop. In this review, we discuss the linking components between the cytoskeletons and the plasma membrane, and/or the cell wall. We also discuss the prospective roles of these components in cell wall biosynthesis and modifications, and aim to provide a platform for further studies in this field.  相似文献   

10.
Mutations in the TUMOROUS SHOOT DEVELOPMENT2 (TSD2) gene reduce cell adhesion, and in strongly affected individuals cause non-coordinated shoot development that leads to disorganized tumor-like growth in vitro. tsd2 mutants showed increased activity of axial meristems, reduced root growth and enhanced de-etiolation. The expression domains of the shoot meristem marker genes KNAT1 and KNAT2 were enlarged in the mutant background. Soil-grown tsd2 mutants were dwarfed, but overall showed morphology similar to that of the wild-type (WT). The TSD2 gene was identified by map-based cloning. It encodes a novel 684 amino acid polypeptide containing a single membrane-spanning domain in the N-terminal part and S-adenosyl-l-methionine binding and methyltransferase domains in the C-terminal part. Expression of a TSD2:GUS reporter gene was detected mainly in meristems and young tissues. A green fluorescent protein-tagged TSD2 protein localized to the Golgi apparatus. The cell-adhesion defects indicated altered pectin properties, and we hypothesize that TSD2 acts as a pectin methyltransferase. However, analyses of the cell-wall composition revealed no significant differences of the monosaccharide composition, the uronic acid content and the overall degree of pectin methylesterification between tsd2 and WT. The findings support a function of TSD2 as a methyltransferase, with an essential role in cell adhesion and coordinated plant development.  相似文献   

11.
壳多糖酶研究的概况及最新进展   总被引:14,自引:0,他引:14  
壳多糖酶专一性水解壳多糖中的β-1,4糖苷键,在自然界的碳循环中具有极其重要的意义.壳多糖酶分布广泛,功能多样,在真菌生长发育、植物抗真菌感染等生理过程中壳多糖酶均发挥重要作用.文章概述了壳多糖酶研究的现状及最新进展,介绍了壳多糖酶的分布、理化性质、催化性质、在细胞中的定位及其调控;简介了近年来真菌和植物壳多糖酶研究的动态及最新进展.  相似文献   

12.
本文简要介绍植物与病原菌在细胞壁层面上的相互作用,并从植物细胞对受侵过程中细胞壁损伤的感知、细胞壁损伤引起植物抗病信号途径的活化、植物细胞壁防卫反应的分子机制等方面重点概述植物细胞壁抗性及其分子机制。  相似文献   

13.
Glucose(Glu) is involved in not only plant physiological and developmental events but also plant responses to abiotic stresses. Here, we found that the exogenous Glu improved root and shoot growth, reduced shoot cadmium(Cd) concentration, and rescued Cdinduced chlorosis in Arabidopsis thaliana(Columbia ecotype,Col-0) under Cd stressed conditions. Glucose increased Cd retained in the roots, thus reducing its translocation from root to shoot signi fi cantly. The most Cd retained in the roots was found in the hemicellulose 1. Glucose combined with Cd(Glu t Cd) treatment did not affect the content of pectin and its binding capacity of Cd while it increased the content of hemicelluloses 1 and the amount of Cd retained in it signi fi cantly. Furthermore, Leadmium Green staining indicated that more Cd was compartmented into vacuoles in Glu t Cd treatment compared with Cd treatment alone, which was in accordance with the R e ssigni fi cant upregulation of the expression of tonoplastlocalized metal transporter genes, suggesting that compartmentation of Cd into vacuoles also contributes to the Glu-alleviated Cd toxicity. Taken together, we demonstrated that Glu-alleviated Cd toxicity is mediated through increasing Cd fi xation in the root cell wall and sequestration into the vacuoles.  相似文献   

14.
一种植物细胞壁松驰蛋白:膨胀素   总被引:5,自引:0,他引:5  
在植物细胞的生长过程中 ,多糖和蛋白质分泌到细胞壁里层 ,并形成具有一定机械强度的网络 ,这个网络是能伸展的 ,除非细胞停止生长。在细胞的生长过程中 ,一种细胞壁蛋白—膨胀素首次被鉴定出来具有使细胞壁的多糖网络疏松的能力 ,从而使膨压驱动的细胞扩大。膨胀素由两个多基因家族即α -膨胀素和 β -膨胀素多基因家族编码 ,每种基因的表达具有部位和细胞类型的特异性 ,但最新的研究也表明拟南芥中的膨胀素可以分为三个亚家族。越来越多的膨胀素基因从各种植物中鉴定出来 ,系统分析显示它们可能从一个共同的祖先基因进化而来。膨胀素的作用机理研究的还不是很清楚 ,但因为它们具有特别的功能 ,因此展现出良好的工业化应用前景。  相似文献   

15.
Cell poking is an experimental technique that is widely used to study the mechanical properties of plant cells. A full understanding of the mechanical responses of plant cells to poking force Is helpful for experimental work. The aim of this study was to numerically investigate the stress distribution of the cell wall, cell turgor, and deformation of plant cells in response to applied poking force. Furthermore, the locations damaged during poking were analyzed. The model simulates cell poking, with the cell treated as a spherical, homogeneous, isotropic elastic membrane, filled with incompressible, highly viscous liquid. Equilibrium equations for the contact region and the non-contact regions were determined by using membrane theory. The boundary conditions and continuity conditions for the solution of the problem were found. The forcedeformation curve, turgor pressure and tension of the cell wall under cell poking conditions were obtained. The tension of the cell wall circumference was larger than that of the meridian. In general, maximal stress occurred at the equator around. When cell deformation increased to a certain level, the tension at the poker tip exceeded that of the equator. Breakage of the cell wall may start from the equator or the poker tip, depending on the deformation. A nonlinear model is suitable for estimating turgor, stress, and stiffness, and numerical simulation is a powerful method for determining plant cell mechanical properties.  相似文献   

16.
17.
Collenchyma: a versatile mechanical tissue with dynamic cell walls   总被引:1,自引:0,他引:1  
Olivier Leroux 《Annals of botany》2012,110(6):1083-1098

Background

Collenchyma has remained in the shadow of commercially exploited mechanical tissues such as wood and fibres, and therefore has received little attention since it was first described. However, collenchyma is highly dynamic, especially compared with sclerenchyma. It is the main supporting tissue of growing organs with walls thickening during and after elongation. In older organs, collenchyma may become more rigid due to changes in cell wall composition or may undergo sclerification through lignification of newly deposited cell wall material. While much is known about the systematic and organographic distribution of collenchyma, there is rather less information regarding the molecular architecture and properties of its cell walls.

Scope and conclusions

This review summarizes several aspects that have not previously been extensively discussed including the origin of the term ‘collenchyma’ and the history of its typology. As the cell walls of collenchyma largely determine the dynamic characteristics of this tissue, I summarize the current state of knowledge regarding their structure and molecular composition. Unfortunately, to date, detailed studies specifically focusing on collenchyma cell walls have not been undertaken. However, generating a more detailed understanding of the structural and compositional modifications associated with the transition from plastic to elastic collenchyma cell wall properties is likely to provide significant insights into how specific configurations of cell wall polymers result in specific functional properties. This approach, focusing on architecture and functional properties, is likely to provide improved clarity on the controversial definition of collenchyma.  相似文献   

18.
Background In plants, the products of secretory activity leave the protoplast and cross the plasma membrane by means of transporters, fusion with membranous vesicles or, less commonly, as result of disintegration of the cell. These mechanisms do not address an intriguing question: How do secretory products cross the cell wall? Furthermore, how do these substances reach the external surface of the plant body? Such diverse substances as oils, polysaccharides or nectar are forced to cross the cell wall and, in fact, do so. How are chemical materials that are repelled by the cell wall or that are sufficiently viscous to not cross passively released from plant cells?Scope and Conclusions I propose a cell-cycle model developed based on observations of different secreting systems, some unpublished results and an extensive literature review, aiming to understand the processes involved in both the secretory process and the release of secretion products. In the absence of facilitated diffusion, a mechanical action of the protoplast is necessary to ensure that some substances can cross the cell wall. The mechanical action of the protoplast, in the form of successive cycles of contraction and expansion, causes the material accumulated in the periplasmic space to cross the cell wall and the cuticle. This action is particularly relevant for the release of lipids, resins and highly viscous hydrophilic secretions. The proposed cell-cycle model and the statements regarding exudate release will also apply to secretory glands not elaborated upon here. Continuous secretion of several days, as observed in extrafloral nectaries, salt glands and some mucilage-producing glands, is only possible because the process is cyclical.  相似文献   

19.
Many fungal parasites enter plant cells by penetrating the host cell wall and, thereafter, differentiate specialized intracellular feeding structures, called haustoria, by invagination of the plant's plasma membrane. Arabidopsis PEN gene products are known to act at the cell periphery and function in the execution of apoplastic immune responses to limit fungal entry. This response underneath fungal contact sites is tightly linked with the deposition of plant cell wall polymers, including PMR4/GSL5-dependent callose, in the paramural space, thereby producing localized wall thickenings called papillae. We show that powdery mildew fungi specifically induce the extracellular transport and entrapment of the fusion protein GFP–PEN1 syntaxin and its interacting partner monomeric yellow fluorescent protein (mYFP)–SNAP33 within the papillary matrix. Remarkably, PMR4/GSL5 callose, GFP–PEN1, mYFP–SNAP33, and the ABC transporter GFP–PEN3 are selectively incorporated into extracellular encasements surrounding haustoria of the powdery mildew Golovinomyces orontii , suggesting that the same secretory defense responses become activated during the formation of papillae and haustorial encasements. This is consistent with a time-course analysis of the encasement process, indicating that these extracellular structures are generated through the extension of papillae. We show that PMR4/GSL5 callose accumulation in papillae and haustorial encasements occurs independently of PEN1 syntaxin. We propose a model in which exosome biogenesis/release serves as a common transport mechanism by which the proteins PEN1 and PEN3, otherwise resident in the plasma membrane, together with membrane lipids, become stably incorporated into both pathogen-induced cell wall compartments.  相似文献   

20.
Summary— Polyclonal antibodies against 4-O-methyl-glucuronoxylan and α L-1-3 arabinofuranosyl poly-β-d-1-4-xylopyranosyl were raised from rabbits. An immunocytochemical technique was used to localize xylans and arabinoxylans in the plant cell walls of the apical internode of two maize lines of different digestibility. The sclerenchyma, fibres and xylem (lignified tissues) and the parenchyma (non-lignified tissue) were studied. The arabinoxylans were more heavily labelled than the xylans in the lignified tissues of the less digestible maize whereas in the more digestible line the labelling of the two polysaccharides was similar. The xylans and arabinoxylans were localized in the secondary cell wall. In both maize lines, labelling increased from the base upwards of the apical internode, reflecting the changes in growth stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号