首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
硫酸盐还原菌(sulfate-reducing bacteria,SRB)广泛分布于高温、高压及高盐的石油油藏中,在油藏硫循环中起主导作用。SRB能在油藏生物膜内生长,有微量低分子有机酸时利用硫酸盐为电子受体并将其还原成硫化氢。硫化氢会腐蚀管道,导致原油泄露等其他安全问题,每年造成的经济损失超过7 000亿元。本文首先总结了油藏生物膜内微生物菌群多样性,分析了生物膜内SRB及其相关菌群的协同腐蚀机理;然后讨论了高温油藏SRB介导的硫氮氢生物地球化学循环过程、胞外电子传递机制及其腐蚀作用,并通过几个高温油藏SRB生物膜内腐蚀的现场案例进一步阐明了SRB的腐蚀机制。在此基础上,提出了应对高温油藏生物膜内SRB腐蚀的生物纳米防治策略,这为高温油藏管道防腐提供了新思路。  相似文献   

2.
Oil reservoirs represent a nutrient-rich ecological niche of the deep biosphere. Although most oil reservoirs are occupied by microbial populations, when and how the microbes colonized these environments remains unanswered. To address this question, we compared 11 genomes of Thermotoga maritima-like hyperthermophilic bacteria from two environment types: subsurface oil reservoirs in the North Sea and Japan, and marine sites located in the Kuril Islands, Italy and the Azores. We complemented our genomes with Thermotoga DNA from publicly available subsurface metagenomes from North America and Australia. Our analysis revealed complex non-bifurcating evolutionary history of the isolates'' genomes, suggesting high amounts of gene flow across all sampled locations, a conjecture supported by numerous recombination events. Genomes from the same type of environment tend to be more similar, and have exchanged more genes with each other than with geographically close isolates from different types of environments. Hence, Thermotoga populations of oil reservoirs do not appear isolated, a requirement of the ‘burial and isolation'' hypothesis, under which reservoir bacteria are descendants of the isolated communities buried with sediments that over time became oil reservoirs. Instead, our analysis supports a more complex view, where bacteria from subsurface and marine populations have been continuously migrating into the oil reservoirs and influencing their genetic composition. The Thermotoga spp. in the oil reservoirs in the North Sea and Japan probably entered the reservoirs shortly after they were formed. An Australian oil reservoir, on the other hand, was likely colonized very recently, perhaps during human reservoir development.  相似文献   

3.

Microorganisms have shown their ability to colonize extreme environments including deep subsurface petroleum reservoirs. Physicochemical parameters may vary greatly among petroleum reservoirs worldwide and so do the microbial communities inhabiting these different environments. The present work aimed at the characterization of the microbiota in biodegraded and non-degraded petroleum samples from three Brazilian reservoirs and the comparison of microbial community diversity across oil reservoirs at local and global scales using 16S rRNA clone libraries. The analysis of 620 16S rRNA bacterial and archaeal sequences obtained from Brazilian oil samples revealed 42 bacterial OTUs and 21 archaeal OTUs. The bacterial community from the degraded oil was more diverse than the non-degraded samples. Non-degraded oil samples were overwhelmingly dominated by gammaproteobacterial sequences with a predominance of the genera Marinobacter and Marinobacterium. Comparisons of microbial diversity among oil reservoirs worldwide suggested an apparent correlation of prokaryotic communities with reservoir temperature and depth and no influence of geographic distance among reservoirs. The detailed analysis of the phylogenetic diversity across reservoirs allowed us to define a core microbiome encompassing three bacterial classes (Gammaproteobacteria, Clostridia, and Bacteroidia) and one archaeal class (Methanomicrobia) ubiquitous in petroleum reservoirs and presumably owning the abilities to sustain life in these environments.

  相似文献   

4.
微生物强化采油(microbial enhanced oil recovery,MEOR)是近年来在国内外发展迅速的一项提高原油采收率技术。微生物在油藏中高效生产表面活性剂等驱油物质是微生物采油技术成功实施的关键之一。然而,油藏的缺/厌氧环境严重影响好氧表面活性剂产生菌在油藏原位的生存与代谢活性;油藏注空气会增加开采成本,且注入空气的作用时效和范围难以确定。因此,开发厌氧产表面活性剂菌种资源并强化其驱油效率对于提高原油采收率具有重要意义。本文综述了国内外近年来利用厌氧产表面活性剂微生物提高原油采收率的研究进展,简述了微生物厌氧产表面活性剂的相关驱油机理、菌种资源开发现状以及油藏原位驱油应用进展,并对当前的研究提出了一些思考。  相似文献   

5.
目前我国油田开发主要处于高含水后期,微生物驱提高石油采收率技术(MEOR)以低成本、环境友好等独特的优势引起了石油工业界的重视。实际上,经过半个多世纪的发展,MEOR已经成为提高采收率的重要前沿技术。高压是油藏的主要环境特征,在影响油藏微生物生存与活性等方面具有重要作用。本文从油藏及其微生物的主要特征、微生物对高压环境的适应机制以及高压下微生物降解烃的代谢特征等方面进行了综述。介绍了对油藏微生物资源、群落结构、微生物在油水相中分布的认识,微生物乳化原油机制,以及微生物在油藏厌氧环境中协同代谢、受温度和压力影响的特点,并列举了MEOR的矿场应用。在高压适应机制上,微生物主要通过改变和调整细胞膜结构、增加胞内脂质组分和表达胞内特殊酶等作用来实现对压力的适应;在高压下烃降解微生物代谢速率低于常压,而且耐压菌和嗜压菌具有不同的烃降解效率。  相似文献   

6.
【目的】微生物油气勘探技术是基于油气藏的轻烃微渗漏原理衍生的地表勘探技术。油气藏中的轻烃部分(C1-C5)以微渗漏的方式通过上覆的沉积层,在近地表土壤中诱导专门利用轻烃的微生物繁殖与生长,油气区的微生物种类与浓度有别于下伏没有油气藏的地区。通过分析微生物的浓度异常特征,对油气富集区及油气藏进行研究和预测。【方法】在人工模拟条件下研究油气微生物数量和群落异常特征,在此基础上,以海相碳酸盐岩气田普光气田为研究对象,进一步开展微生物勘探研究,鉴定油气藏上方气态烃氧化过程的微生物驱动者,提取土壤中的微生物异常信息。【结果】人工模拟条件下发现Lacibacter cauensis、Methylococcaceae、Methylophilaceae与甲烷气体培养正相关(气指示菌),而未培养的硫氧化微生物等则与丁烷培养正相关(油指示菌)。【结论】进一步在普光气田原位研究中进行验证,发现地表油气微生物数量和群落异常与油气藏有较好的关联性;与油气化探指标对比后发现,油气藏上方微生物正异常和轻烃负异常具有较为明显的互补关系。本研究深化了对典型油气藏上方气态烃氧化微生物转化机制的认识,为油气微生物勘探技术提供理论与实践依据。  相似文献   

7.
The nitrate-reducing microbial community in oil reservoirs was examined by PCR using primers to amplify a segment of napA gene encoding for a subunit of the nitrate reductase, and the effects of different organic carbon additions on the nitrate-reducing community were also evaluated. The orders Rhodocyclales and Burkholderiales within Betaproteobacteria and Pseudomonadales within Gammaproteobacteria were recovered in production water of all three oil reservoirs. Amendment of organic acids promoted Enterobacteriales within Gammaproteobacteria and orders of Rhodocyclales, Pseudomonadales, and Burkholderiales, while alkanes favored the Rhizobiaceae family within Alphaproteobacteria and orders of Rhodocyclales and Pseudomonadales. Results indicated that the functional gene napA can be used as a valuable biomarker in analyzing the diversity of nitrate reducers in oil reservoirs. Nitrate-reducing microbial community shifts following the available carbon sources. Information about napA gene in oil reservoirs environment is scarce. This is the first study that combines molecular and culture-dependent approaches to reveal the diversity of the nitrate-reducing microbial community in production water of oil reservoirs by using the napA gene.  相似文献   

8.
油藏是一个高温、高压、少氧、寡营养和封闭的极端环境,油田经过多年注水开发后,在油藏内部形成了相对稳定的微生物群落体系,这些微生物以石油烃分解为起始,形成了一个复杂的食物链,对油藏碳、硫和金属离子的元素地球化学循环起着非常重要的作用。微生物提高原油采收率技术(MEOR)是利用微生物及其代谢产物与油藏和原油发生作用来提高原油采收率的一种新技术,具有成本低、适应性强和环境友好等特点,因此有望成为未来化学驱后油藏和高含水油藏进一步提高采收率的重要手段。对油藏内源微生物及其介导的生化反应,微生物采油原理、发展历程和现场试验进行综述,并提出了未来的发展方向。  相似文献   

9.
Semenova  E. M.  Ershov  A. P.  Sokolova  D. Sh.  Tourova  T. P.  Nazina  T. N. 《Microbiology》2020,89(6):685-696
Microbiology - Nitrates do not occur in the formation water of oil reservoirs. A number of oil companies use nitrate injection technology to suppress corrosion of steel equipment and to decrease...  相似文献   

10.
Most of the oil in low temperature, non-uplifted reservoirs is biodegraded due to millions of years of microbial activity, including via methanogenesis from crude oil. To evaluate stimulating additional methanogenesis in already heavily biodegraded oil reservoirs, oil sands samples were amended with nutrients and electron acceptors, but oil sands bitumen was the only organic substrate. Methane production was monitored for over 3000 days. Methanogenesis was observed in duplicate microcosms that were unamended, amended with sulfate or that were initially oxic, however methanogenesis was not observed in nitrate-amended controls. The highest rate of methane production was 0.15 μmol CH4 g−1 oil d−1, orders of magnitude lower than other reports of methanogenesis from lighter crude oils. Methanogenic Archaea and several potential syntrophic bacterial partners were detected following the incubations. GC–MS and FTICR–MS revealed no significant bitumen alteration for any specific compound or compound class, suggesting that the very slow methanogenesis observed was coupled to bitumen biodegradation in an unspecific manner. After 3000 days, methanogenic communities were amended with benzoate resulting in methanogenesis rates that were 110-fold greater. This suggests that oil-to-methane conversion is limited by the recalcitrant nature of oil sands bitumen, not the microbial communities resident in heavy oil reservoirs.  相似文献   

11.
地下深部油藏通常为高温、高压以及高盐的极端环境,含有非常丰富的本源嗜热厌氧微生物,按代谢类群可分为发酵细菌、硫酸盐还原菌、产甲烷古菌和铁还原菌。从油田环境已经分离出90株铁还原微生物,如热袍菌目、热厌氧杆菌目、脱铁杆菌目、δ-变形菌纲脱硫单胞菌目、γ-变形菌纲希瓦氏菌属和广古菌门栖热球菌属等,这些菌株生长温度范围为4-85°C,生长盐度范围为0.1%-10.0%NaCl,还未见到文献报道油藏铁还原菌的耐压性研究。在油藏环境中存在微生物、矿物和流体(油/水)三者之间的相互作用,油藏中的粘土矿物能够作为微生物生命活动的载体,也能为微生物代谢作用提供电子受体。本文综述了油藏铁还原菌分离和表征的研究进展,简述了油藏铁还原菌的环境适用性,并展望了铁还原菌在提高原油采收率方面的应用前景。  相似文献   

12.
About half of the world's oil production is from carbonate formations. However, most of the research in microbially enhanced oil recovery (MEOR), a potentially important tertiary recovery technology, has focused on sandstone reservoirs because, in general, they are geologically simpler than carbonate reservoirs and easier to model in the laboratory. Carbonate formations have a wide range of pore geometries and distributions, resulting in complex flow dynamics. The low matrix permeabilities and the dual porosity characteristics of most carbonate formations, coupled with the chemistry of carbonates, have slowed implementation of enhanced oil recovery methods. A review of the data on carbonate reservoirs in Dwight's Energydata TOTL System indicated that 40% of the oil‐producing carbonate reservoirs surveyed in the United States have environmental, geological, and petrophysical conditions that would make them candidates for MEOR. A review of a number of MEOR field trials showed that rates of oil production could be increased by as much as 200%. Microbial activity in these trials was probably due to that of indigenous populations rather than the microorganisms injected for the trials. Detrimental effects such as loss of injectivity and increased souring were not reported. Based on analysis of the geology and petrophysical characteristics of carbonates, two common mechanisms of MEOR, microbial acid production and microbial gas production, are especially suited for application in carbonate reservoirs.  相似文献   

13.
烃降解菌和产甲烷菌是油藏环境微生物生态系统中重要的功能菌群, 采用DGGE和FISH方法分析了不同油藏样品中两类菌群的多样性和产甲烷活性。DGGE结果表明, 不同水样的alkB基因多样性相差较大, 而且注水井条带明显多于采油井。FISH结果表明, 油藏水样中产甲烷菌含量明显高于烃降解菌, 且两者空间分布的位置较近; 说明油藏环境中烃降解菌和产甲烷菌结成一定的相互关系。富集培养表明, 胜利油田产出液接种物培养130 d后, 石油烃降解率达到50%以上, 产甲烷的最大速率达到1.57×10?2 mmol/(L?d)。利用分子生物学方法分析油藏环境功能菌群的多样性, 可以为开展微生物采油技术的应用提供有用信息。  相似文献   

14.
The Athabasca Oil Sands are located within the Western Canadian Sedimentary Basin, which covers over 140,200 km2 of land in Alberta, Canada. The oil sands provide a unique environment for bacteria as a result of the stressors of low water availability and high hydrocarbon concentrations. Understanding the mechanisms bacteria use to tolerate these stresses may aid in our understanding of how hydrocarbon degradation has occurred over geological time, and how these processes and related tolerance mechanisms may be used in biotechnology applications such as microbial enhanced oil recovery (MEOR). The majority of research has focused on microbiology processes in oil reservoirs and oilfields; as such there is a paucity of information specific to oil sands. By studying microbial processes in oil sands there is the potential to use microbes in MEOR applications. This article reviews the microbiology of the Athabasca Oil Sands and the mechanisms bacteria use to tolerate low water and high hydrocarbon availability in oil reservoirs and oilfields, and potential applications in MEOR.  相似文献   

15.
Bacterial communities in both aqueous and oil phases of water-flooded petroleum reservoirs were characterized by molecular analysis of bacterial 16S rRNA genes obtained from Shengli Oil Field using DNA pyrosequencing and gene clone library approaches. Metagenomic DNA was extracted from the aqueous and oil phases and subjected to polymerase chain reaction amplification with primers targeting the bacterial 16S rRNA genes. The analysis by these two methods showed that there was a large difference in bacterial diversity between the aqueous and oil phases of the reservoir fluids, especially in the reservoirs with lower water cut. At a high phylogenetic level, the predominant bacteria detected by these two approaches were identical. However, pyrosequencing allowed the detection of more rare bacterial species than the clone library method. Statistical analysis showed that the diversity of the bacterial community of the aqueous phase was lower than that of the oil phase. Phylogenetic analysis indicated that the vast majority of sequences detected in the water phase were from members of the genus Arcobacter within the Epsilonproteobacteria, which is capable of degrading the intermediates of hydrocarbon degradation such as acetate. The oil phase of reservoir fluid samples was dominated by members of the genus Pseudomonas within the Gammaproteobacteria and the genus Sphingomonas within the Alphaproteobacteria, which have the ability to degrade crude oil through adherence to hydrocarbons under aerobic conditions. In addition, many anaerobes that could degrade the component of crude oil were also found in the oil phase of reservoir fluids, mainly in the reservoir with lower water cut. These were represented by Desulfovibrio spp., Thermodesulfovibrio spp., Thermodesulforhabdus spp., Thermotoga spp., and Thermoanaerobacterium spp. This research suggested that simultaneous analysis of DNA extracted from both aqueous and oil phases can facilitate a better understanding of the bacterial communities in water-flooded petroleum reservoirs.  相似文献   

16.
Gao  Peike  Li  Guoqiang  Le  Jianjun  Liu  Xiaobo  Liu  Fang  Ma  Ting 《Applied microbiology and biotechnology》2018,102(4):2007-2017
Applied Microbiology and Biotechnology - Further exploitation of the residual oil underground in post-polymer flooded reservoirs is attractive and challengeable. In this study, indigenous microbial...  相似文献   

17.
张翼飞  许科伟  符波  杨帆  刘和 《微生物学报》2020,60(6):1221-1231
【目的】甲烷氧化细菌(MOB)长期以来一直被用作石油和天然气勘探的重要油气指示菌,其仅能利用甲烷作为唯一碳源。根据甲烷氧化菌菌群特征结合地质剖面可以较好地预测深部油气藏,为石油勘探提供良好的数据支撑。由于传统平板培养法只能针对可培养甲烷氧化菌,方法具有一定局限性。【方法】本文采用分子生物学技术结合地球化学烃类指标研究了顺北典型油气藏上方土壤中甲烷氧化菌的分布。【结果】研究结果显示,油气田上方pmoA基因拷贝数与酸解烃含量具有一定的正相关性,且油气区比背景区高0.5–2个数量级。16SrRNA基因高通量测序和pmoA基因的克隆文库结果显示顺北油藏上方土壤中甲烷氧化菌主要以I型为主,水平剖面中甲烷氧化菌随着离油田距离增加存在I型向II型演变的现象,且Methylomonassp.在背景区与油气区的丰度有较大差异,具有良好的油气指示潜力。【结论】综上所述,长期微渗透过程中甲烷氧化菌(MOB)的菌群特征对预测深层油藏具有一定的指示作用,结合地质剖面和地表烃类可以有效预测有利油藏区域。  相似文献   

18.
The diversity and distribution of bacterial and archaeal communities in four different water flooding oil reservoirs with different geological properties were investigated using 16S rDNA clone library construction method. Canonical correspondence analysis was used to analyze microbial community clustering and the correlation with environmental factors. The results indicated that the diversity and abundance in the bacterial communities were significantly higher than the archaeal communities, while both of them had high similarity within the communities respectively. Phylogenetic analysis showed that of compositions of bacterial communities were distinctly different both at phylum and genus level. Proteobacteria dominated in each bacterial community, ranging from 61.35 to 75.83?%, in which α-proteobacteria and γ-proteobacteria were the main groups. In comparison to bacterial communities, the compositions of archaeal communities were similar at phylum level, while varied at genus level, and the dominant population was Methanomicrobia, ranging from 65.91 to 92.74?% in the single oil reservoir. The factor that most significantly influenced the microbial communities in these reservoirs was found to be temperature. Other environmental factors also influenced the microbial communities but not significantly. It is therefore assumed that microbial communities are formed by an accumulated effect of several factors. These results are essential for understanding ecological environment of the water flooding oil reservoirs and providing scientific guidance to the performance of MEOR technology.  相似文献   

19.
石油烃的厌氧生物降解对油藏残余油气化开采的启示   总被引:1,自引:0,他引:1  
利用微生物将油藏中难以动用的原油就地转化为甲烷,以天然气的形式开采、或作为战略资源就地储备,从而大幅度提高油气资源的利用率,是当前国际上研究的前沿课题。本文综述了石油烃厌氧生物降解转化为甲烷的菌群结构、反应热力学和反应动力学等基础科学问题的最新研究进展,讨论了油藏残余油气化开采技术的可行性及开发潜力,提出了该技术进一步研究的方向。  相似文献   

20.
Chemical and behavioural studies indicated that the oil glands of the Oribatida represented a central organ for protection and semiochemical communication. The hitherto unknown mode of action of these glands and their microscopic anatomy have been investigated in Collohmannia gigantea by histological and SEM techniques. The paired oil glands are located dorsolaterally in the hysterosoma and mainly comprise large intima-lined and sac-like reservoirs which are surrounded by glandular tissue. The reservoirs consist of a single-layered flat epithelium and probably serve for storage of the oil gland secretion only, but not for its production. Each reservoir opens to the body outside via a single pore. Externally, the pores appear as oval-shaped rings of smooth cuticle, moderately projecting from the surface of the notogaster. The pore orifices are supplied with trapdoor-like closing mechanisms, consisting of cuticular flaps which permit reservoir opening by muscles attaching to the posterior part of the reservoir and the inner side of the notogaster. These morphological data, especially the large intima-lined reservoirs along with closing mechanisms under muscular control, are consistent with supposed biological roles of oil glands as defensive or alarm pheromonal organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号