首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 178 毫秒
1.
Gall size and rates of ethylene production by various hosts infected with Meloidogyne javanica and by excised tomato root cultures infected with M. javanica or M. hapla were measured. Infection with M. javanica increased the rate of ethylene production in dicotyledonous plants (cabbage, pea, carrot, cucumber, carnation, and tomato), but not in infected monocotyledonous plants (corn, wheat, and onion). Nematode infection induced large galls on roots of dicotyledonous, but not monocotyledonous, plants. Excised tomato roots in culture infected with M. javanica produced ethylene at high rates and formed large galls, whereas roots infected with M. hapla produced ethylene at low rates and induced smaller galls.  相似文献   

2.
The infectivity and development of four populations of Meloidogyne hapla were compared, at three temperatures, on tomato and two varieties of cucumber. A population from Canada produced few root-galls on cucumber and, except at 24 C, no larvae developed into adult females and produced egg masses. In contrast, a population with 45 chromosomes from America produced many galls on cucumber and small proportions of larvae became females and produced egg masses at 20 and 24 C. At 18 C this population produced no egg masses on cucumber, but a population from Britain and one from America with 17 chromosomes produced more egg masses at this temperature than at 20 or 24 C. Dissection of the galls showed that on cucumber many larvae died or their growth and development was slowed.  相似文献   

3.
Although marigold (Tagetes patula) is known to produce allelopathic compounds toxic to plant-parasitic nematodes, suppression of Meloidogyne incognita can be inconsistent. Two greenhouse experiments were conducted to test whether marigold is more effective in suppressing Meloidogyne spp. when it is active rather than dormant. Soils infested with Meloidogyne spp. were collected and conditioned in the greenhouse either by 1) keeping the soil dry (DRY), 2) irrigating with water (IRR), or 3) drenching with cucumber (Cucumis sativus) leachate (CL) for 5 wk. These soils were then either planted with cucumber, marigold or remained bare for 10 wk. Suppression of nematode by marigold was then assayed using cucumber. DRY conditioning resulted in the highest number of inactive nematodes, whereas CL and IRR had higher numbers of active nematodes than DRY. At the end of the cucumber bioassay, marigold suppressed the numbers of Meloidogyne females in cucumber roots if the soil was conditioned in IRR or CL, but not in DRY. However, in separate laboratory assays, marigold root leachate slightly reduced M. incognita J2 activity but did not reduce egg hatch (P > 0.05). These finding suggest that marigold can only suppress Meloidogyne spp. when marigold is actively growing. This further suggests that marigold will more efficiently suppress Meloidogyne spp. if planted when these nematodes are in active stage.  相似文献   

4.
Root-knot nematodes (RKN) (Meloidogyne spp.) are economically the most important pathogens of agricultural products. The aim of the present study was to control Meloidogyne javanica by using Arthrobotrys oligospora and salicylic acid (SA) and to analyse the kinetics of enzymes, phenylalanine ammonia lyase (PAL), peroxidase (POX), polyphenol oxidase (PPO) and phenolic compounds accumulation in the root system of tomato after inoculation with M. javanica, A. oligospora and SA. The ability of A. oligospora to produce extracellular proteases was also examined. In greenhouse studies, we used soil drenching of A. oligospora (106 spores/ml) and soil drenching or leaf spraying of SA (5 mM) in six-leaf stage, separately and in combination. Experiments were performed in a completely randomised design. The efficiencies of treatments were appraised by using diameter of galls, number of galls per plant, number of egg masses per plant, number of eggs per egg mass, root and foliage fresh weight. The results showed that the combined application of A. oligospora and SA provided the best nematode control. The activity of the enzymes and phenolic compounds increased in comparison with the control. The nematophagous fungus A. oligospora produced extracellular proteases in the broth culture. Using A. oligospora and SA could be effective in control of M. javanica in tomato.  相似文献   

5.
Guardian peach rootstock was evaluated for susceptibility to Meloidogyne incognita race 3 (Georgia-peach isolate) and M. javanica in the greenhouse. Both commercial Guardian seed sources produced plants that were poor hosts of M. incognita and M. javanica. Reproduction as measured by number of egg masses and eggs per plant, eggs per egg mass, and eggs per gram of root were a better measure of host resistance than number of root galls per plant. Penetration, development, and reproduction of M. incognita in Guardian (resistant) and Lovell (susceptible) peach were also studied in the greenhouse. Differences in susceptibility were not attributed to differential penetration by the infectivestage juveniles (J2) or the number of root galls per plant. Results indicated that M. incognita J2 penetrated Guardian roots and formed galls, but that the majority of the nematodes failed to mature and reproduce.  相似文献   

6.
Fluensulfone is a new nematicide in the flouroalkenyl chemical group. A field experiment was conducted in 2012 and 2013 to evaluate the efficacy of various application methods of fluensulfone for control of Meloidogyne spp. in cucumber (Cucumis sativus). Treatments of fluensulfone (3.0 kg a.i./ha) were applied either as preplant incorporation (PPI) or via different drip irrigation methods: drip without pulse irrigation (Drip NP), pulse irrigation 1 hr after treatment (Drip +1P), and treatment at the same time as pulse irrigation (Drip =P). The experiment had eight replications per treatment and also included a PPI treatment of oxamyl (22.5 kg a.i./ha) and a nontreated control. Compared to the control, neither the oxamyl nor the fluensulfone PPI treatments reduced root galling by Meloidogyne spp. in cucumber. Among the drip treatments, Drip NP and Drip +1P reduced root galling compared to the control. Cucumber yield was greater in all fluensulfone treatments than in the control. In a growth-chamber experiment, the systemic activity and phytotoxicity of fluensulfone were also evaluated on tomato (Solanum lycopersicum), eggplant (Solanum melongena), cucumber, and squash (Curcurbita pepo). At the seedling stage, foliage of each crop was sprayed with fluensulfone at 3, 6, and 12 g a.i./liter, oxamyl at 4.8 g a.i./liter, or water (nontreated control). Each plant was inoculated with Meloidogyne incognita juveniles 2 d after treatment. There were six replications per treatment and the experiment was conducted twice. Foliar applications of fluensulfone reduced plant vigor and dry weight of eggplant and tomato, but not cucumber or squash; application of oxamyl had no effect on the vigor or weight of any of the crops. Typically, only the highest rate of fluensulfone was phytotoxic to eggplant and tomato. Tomato was the only crop tested in which there was a reduction in the number of nematodes or galls when fluensulfone or oxamyl was applied to the foliage compared to the nontreated control. This study demonstrates that control of Meloidogyne spp. may be obtained by drip and foliar applications of fluensulfone; however, the systemic activity of fluensulfone is crop specific and there is a risk of phytotoxicity with foliar applications.  相似文献   

7.
Three isolates of Verticillium leptobactrum proceeding from egg masses of root-knot nematodes (RKN) Meloidogyne spp. and soil samples collected in Tunisia were evaluated against second-stage juveniles (J2) and eggs of M. incognita, to determine the fungus biocontrol potential. In vitro tests showed that V. leptobactrum is an efficient nematode parasite. The fungus also colonized egg masses and parasitized hatching J2. In a greenhouse assay with tomato plants parasitized by M. incognita and M. javanica, V. leptobactrum was compared with isolates of Pochonia chlamydosporia and Monacrosporium sp., introducing the propagules into nematode-free or naturally infested soils. The V. leptobactrum isolates were active in RKN biocontrol, improving plants growth with a significant increase of tomato roots length, lower J2 numbers in soil or egg masses, as well as higher egg mortalities. In a second assay with M. javanica, treatments with three V. leptobactrum isolates reduced egg masses on roots as well as the density of J2 and the number of galls. To evaluate the fungus capability to colonize egg masses a nested Real-time polymerase chain reaction (PCR) assay, based on a molecular beacon probe was used to assess its presence. The probe was designed on a V. leptobactrum ITS region, previously sequenced. This method allowed detection of V. leptobactrum from egg masses, allowing quantitative DNA and fungal biomass estimations.  相似文献   

8.
A procedure for extracting eggs of Meloidogyne spp. from soil was developed by modifying and combining certain existing techniques. Egg masses were elutriated from the soft, gelatinous matrices of the egg masses were dissolved, and the dispersed eggs were stained to facilitate counting. Data on egg population densities thus obtained facilitate the study of population dynamics of Meloidogyne spp. and the analysis of root-knot epidemics.  相似文献   

9.
Hyphae of Dactylella oviparasitica proliferated rapidly through MeIoidogyne egg masses, and appressoria formed when they contacted eggs. The fungus probably penetrated egg shells mechanically, although chitinase production detected in culture suggested that enzymatic penetration was also possible. In soil, D. oviparasitica invaded egg masses soon after they were deposited on the root surface and eventually parasitized most of the first eggs laid. Occasionally the fungus grew into Meloidogyne females, halting egg production prematurely. The fungus parasitized eggs in the gelatinous matrix or eggs freed from the matrix and placed on agar or in soil. Specificity in nematode egg parasitism was not displayed, for D. oviparasitica parasitized eggs of four Meloidogyne spp., Acrobeloides sp., Heterodera schachtii, and Tylenchulus semipenetrans. In tests in a growth chamber, parasitism by D. oviparasitica suppressed galling on M. incognita-infected tomato plants.  相似文献   

10.
The host suitability of five zucchini and three cucumber genotypes to Meloidogyne incognita (MiPM26) and M. javanica (Mj05) was determined in pot experiments in a greenhouse. The number of egg masses (EM) did not differ among the genotypes of zucchini or cucumber, but the eggs/plant and reproduction factor (Rf) did slightly. M. incognita MiPM26 showed lower EM, eggs/plant, and Rf than M. javanica Mj05. Examination of the zucchini galls for nematode postinfection development revealed unsuitable conditions for M. incognita MiPM26 as only 22% of the females produced EM compared to 95% of the M. javanica females. As far as cucumber was concerned, 86% of the M. incognita and 99% of the M. javanica females produced EM, respectively. In a second type of experiments, several populations of M. arenaria, M. incognita, and M. javanica were tested on zucchini cv. Amalthee and cucumber cv. Dasher II to assess the parasitic variation among species and populations of Meloidogyne. A greater parasitic variation was observed in zucchini than cucumber. Zucchini responded as a poor host for M. incognita MiPM26, MiAL09, and MiAL48, but as a good host for MiAL10 and MiAL15. Intraspecific variation was not observed among the M. javanica or M. arenaria populations. Cucumber was a good host for all the tested populations. Overall, both cucurbits were suitable hosts for Meloidogyne but zucchini was a poorer host than the cucumber.  相似文献   

11.
Reproduction of Meloidogyne javanica was compared on several Agrobacterium rhizogenes-transformed root cultures under monoxenic conditions. M. javanica reproduced on all transformed roots tested; however, more females and eggs were obtained on potato and South Australian Early Dwarf Red tomato than on bindweed, Tropic tomato, lima bean, or carrot. Roots that grew at moderate rates into the agar and produced many secondary roots supported the highest reproduction. Numbers of females produced in cultures of transformed potato roots increased with increasing nematode inoculum levels, whether inoculum was dispersed eggs or juveniles. Females appeared smaller, produced fewer eggs, and were found in coalesced galls at the higher inoculum levels. The ratio between the final and initial population decreased sharply as the juvenile inoculum increased. The second-stage juvenile was preferred to dispersed eggs or egg masses for inoculation of tissue culture systems because quantity and viability of inoculum were easily assessed. Meloidogyne javanica reared on transformed root cultures were able to complete their life cycles on new transformed root cultures or greenhouse tomato plants.  相似文献   

12.
A total of 297 fungal isolates belonging to 20 genera and 33 species were isolated and identified from eggs and females of Meloidogyne spp. in Bangladesh. The predominant genera were Fusarium, Aspergillus and Penicillium; and the significant ones were Purpureocillium, Trichoderma and Pochonia. The 24 well tissue culture plate screening technique was applied for pathogenicity tests against Meloidogyne incognita in vitro. The average percentages of egg parasitism, egg hatch inhibition and juvenile mortality varied significantly and were ranged from 8.2 to 64.9% (p = 0.05), 24.8 to 72.4% (p = 0.05), and 2.3 to 33.1% (p = 0.05), respectively. Two isolates of Purpureocillium lilacinum (PLSAU 1 and PLSAU 2) and one isolate of Pochonia chlamydosporia (PCSAU 1) reduced more than 60% average root galls of tomato, eggplant and cucumber in greenhouse experiments. This is the first investigation of fungi associated with nematodes in the country and their biological control potential against M. incognita.  相似文献   

13.
Root invasion, root galling, and fecundity of Meloidogyne javanica, M. arenaria, and M. incognita on tobacco was compared in greenhouse and controlled environment experiments. Significantly more M. javanica than M. arenaria or M. incognita larvae were found in tobacco roots at 2, 4, and 6 d after inoculation. Eight days after inoculation there were significantly more M. arenaria and M. javanica than M. incognita larvae. Ten days after inoculation no significant differences were found among the three Meloidogyne species inside the roots. Galls induced by a single larva or several larvae of M. javanica were significantly larger than galls induced by M. incognita: M. arenaria galls were intermediate in size. Only slight differences in numbers of egg masses or numbers of eggs produced by the three Meloidogyne species were observed up to 35 d after inoculation.  相似文献   

14.
Thirteen genera (Aphelenchoides, Criconemella, Ditylenchus, Globodera, Helicotylenchus, Hoplolaimus, Meloidogyne, Longidorus, Paratrichodorus, Pratylenchus, Trichodorus, Tylenchus and Xiphinema) of plant-parasitic nematodes were found associated with 15 semi-temperate vegetable crops in Benguet Province, Philippines. Among these taxa, Helicotylenchus, Meloidogyne and Pratylenchus were the most predominant. Four taxa that can vector plant viruses were also found: Trichodorus, Paratrichodorus, Longidorus and Xiphinema. The taxa Paratrichodorus, Longidorus and Xiphinema have not been reported previously on semi-temperate vegetable crops in the Philippines. The most predominant nematode species were H. dihystera, P. penetrans and Meloidogyne spp. These nematodes were found abundantly in five out of the nine municipalities surveyed: Atok, Bakun, Buguias, Kibungan and Mankayan. The incidence of Criconemella sp., G. rostochiensis, Hoplolaimus sp., Longidorus sp., Trichodorus sp. and Tylenchus sp. was also recorded in at least one municipality. The predominant nematode species were also found on every vegetable crop examined. More particularly, H. dihystera was highly abundant on cucumber, cauliflower, Chinese cabbage, sweet pepper, snap bean and onion; P. penetrans was highly abundant on carrot, celery, garden pea, broccoli, cabbage, Chinese cabbage, Chinese mustard, onion, potato, radish and lettuce; Meloidogyne spp. were highly abundant on celery, cucumber, Chinese mustard, carrot, sweet pepper and potato. According to the formula by Fortuner and Merny (1973 Fortuner, R and Merny, G. 1973. Les nématodes parasites des racines associés au riz en Basse Casamance (Senegal) et en Gambie, Cahiers de l'Orstom. Série Biologique, 21: 320.  [Google Scholar]) for identifying the potential plant pathogens, these predominant nematode species were classified as potential pathogens with the ability to cause economic loss which shows that they are probably important active pathogens of these semi-temperate vegetables. The incidence of other nematode species in the rhizosphere included G. rostochiensis on sweet pepper, garden pea and potato; D. dipsaci on onion; Tylenchus sp. on lettuce, onion and broccoli; A. fragariae on carrot, lettuce, broccoli and onion; Criconemella sp. on cucumber and cauliflower; Longidorus sp. on carrot, celery, cucumber, broccoli, cabbage, cauliflower, Chinese mustard, snap beans, onion, potato and radish; X. americanum on lettuce, broccoli and onion; Paratrichodorus sp. on carrot, lettuce, onion and potato; and Trichodorus sp. on snap bean, potato and radish.  相似文献   

15.
Meloidogyne megatyla n. sp. is described from Pinus taeda in North Carolina. Stylet knobs are distinctively high in proportion to width, giving an especially massive appearance to the knobs of larvae and males. Mean larval length is 416 μm and stylet length is 14.6 μm. The perineal pattern is composed of smooth striae, with a high arch, and is often somewhat rectangular. The relationship of M. megatyla to other Meloidogyne species is unclear, although a comparison is made with Meloidogyne incognita and Meloidogyne mali. Galling was slight; only about 50 eggs were produced per egg mass, and under greenhouse conditions a single generation may take more than 10 weeks. Meloidogyne megatyla n. sp. did not reproduce on any of the differential hosts commonly used to distinguish among Meloidogyne species.  相似文献   

16.
We assessed the efficacy and persistence of a Bacillus thuringiensiskurstaki (Btk) formulation (Dipel) against Trichoplusia ni (Hubner) (Lep., Noctuidae), the cabbage looper, on three greenhouse vegetable crops (tomato, bell pepper and cucumber). First, T. ni larvae were fed leaf discs treated with Btk to assess how Btk toxicity varies with host plant. Secondly, T. ni larvae were fed leaf discs harvested from plants that had been sprayed with Btk 1, 5 and 9 days previously to assess the residual activity of Btk toxicity in greenhouse environments. Mortality of T. ni larvae fed tomato leaf discs was significantly higher than T. ni fed cucumber or pepper leaf discs. The toxicity of Btk had declined by less than 50% after 9 days, which suggests that Btk persistence is lengthy in greenhouse environments. No crop effects on the residual activity of Btk were found. These results demonstrate that the greenhouse environment and the crop should be considered when using Btk for insect management on greenhouse crops.  相似文献   

17.
A field inoculation method was developed to produce Meloidogyne spp. infestation sites with minimal quantities of nematode inoculum and with a reduced labor requirement compared to previous techniques. In a preseason-methyl bromidefumigated site, nematode egg suspensions were delivered at concentrations of 0 or 10x eggs/m of row where x = 2.12, 2.82, 3.52, or 4.22 through a drip line attached to the seed firmer of a commercial 2-row planter into the open seed furrow while planting cowpea. These treatments were compared to a hand-inoculated treatment, in which 103.1 eggs were delivered every 30 cm in 5 ml of water agar suspension 2 weeks after planting. Ten weeks after planting, infection of cowpea roots was measured by gall rating and gall counts on cowpea roots. A linear relationship between the inoculation levels and nematode-induced galls was found. At this time, the amount of galling per root system in the hand-inoculated treatment was less than in the machine-applied treatments. Advantages of this new technique include application uniformity and low population level requisite for establishing the nematode. This method has potential in field-testing of Meloidogyne spp. management strategies by providing uniform infestation of test sites at planting time.  相似文献   

18.
[目的]番茄是一种受连作障碍影响明显的蔬菜作物,本试验旨在研究不同蔬菜作物与番茄轮作后对设施土壤微生物多样性、酶活性及土壤理化性质的影响,以期筛选出适宜与番茄轮作的蔬菜作物,为从设施栽培模式选择角度缓解或避免番茄连作障碍提供理论依据.[方法]试验以连续两茬种植番茄后分别种植大白菜(A)、黄瓜(B)、辣椒(C)、茄子(E...  相似文献   

19.
An isolate of Bacillus thuringiensis, designated CR‐371, was evaluated for efficacy in controlling plant‐parasitic nematodes. This isolate was first shown to be nematicidal to Caenorhabditis elegans in an in vitro laboratory assay. Treatment resulted in a significant reduction in galls due to root‐knot nematode on tomato in a greenhouse trial. In two field trials in Puerto Rico, CR‐371‐treated tomatoes and pepper had significantly fewer root galls due to Meloidogyne incognita than untreated controls, and populations of Rotylenchulus reniformis were smaller. In one experiment, CR‐371 treatment was associated with significant increases in pepper yields, while in the second trial small yield increases of pepper and tomato occurred. In a greenhouse trial, incorporation of CR‐371 into a methyl cellulose seed coat gave similar control of root‐knot nematode on tomato as compared to CR‐371 applied as a drench. CR‐371‐treated strawberry plants also had smaller populations of Pratylenchus penetrans in roots in a greenhouse trial in Massachusetts.  相似文献   

20.
In autoclaved greenhouse soil without Fusarium oxysporum f. sp. vasinfectum, Meloidogyne incognita did not cause leaf or vascular discoloration of 59-day-old cotton plants. Plants had root galls with as few as 50 Meloidogyne larvae per plant. Root galling was directly proportional to the initial nematode population level. Fusarium wilt symptoms occurred without nematodes with 77,000 fungus propagules or more per gram of soil. As few as 50 Meloidogyne larvae accompanying 650 fungus propagules caused Fusarium wilt. With few exceptions, leaf symptoms appeared sooner as numbers of either or both organisms increased. In soils infested with both organisms, the extent of fungal invasion and colonization was well correlated with the extent of nematode galling and other indications of the Fusarium wilt syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号