首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Early acquisition of neural crest competence during hESCs neuralization   总被引:1,自引:0,他引:1  

Background

Neural crest stem cells (NCSCs) are a transient multipotent embryonic cell population that represents a defining characteristic of vertebrates. The neural crest (NC) gives rise to many derivatives including the neurons and glia of the sensory and autonomic ganglia of the peripheral nervous system, enteric neurons and glia, melanocytes, and the cartilaginous, bony and connective tissue of the craniofacial skeleton, cephalic neuroendocrine organs, and some heart vessels.

Methodology/Principal Findings

We present evidence that neural crest (NC) competence can be acquired very early when human embryonic stem cells (hESCs) are selectively neuralized towards dorsal neuroepithelium in the absence of feeder cells in fully defined conditions. When hESC-derived neurospheres are plated on fibronectin, some cells emigrate onto the substrate. These early migratory Neural Crest Stem Cells (emNCSCs) uniformly upregulate Sox10 and vimentin, downregulate N-cadherin, and remodel F-actin, consistent with a transition from neuroepithelium to a mesenchymal NC cell. Over 13% of emNCSCs upregulate CD73, a marker of mesenchymal lineage characteristic of cephalic NC and connexin 43, found on early migratory NC cells. We demonstrated that emNCSCs give rise in vitro to all NC lineages, are multipotent on clonal level, and appropriately respond to developmental factors. We suggest that human emNCSC resemble cephalic NC described in model organisms. Ex vivo emNCSCs can differentiate into neurons in Ret.k- mouse embryonic gut tissue cultures and transplanted emNCSCs incorporate into NC-derived structures but not CNS tissues in chick embryos.

Conclusions/Significance

These findings will provide a framework for further studying early human NC development including the epithelial to mesenchymal transition during NC delamination.  相似文献   

2.
3.
In the cytoplasm of eucaryotic cells, mRNA is associated with proteins. These mRNA-protein complexes, termed messenger ribonucleoprotein (mRNP) particles, are divided into two functional classes. The first class contains free (non-ribosome-associated) mRNPs which have been termed informosomes by others. The second class of mRNPs, those associated with polysomes, are actively engaged in protein synthesis and are termed polysomal mRNPs. The experiments described in this paper examined the proteins associated with polyribosomes in uninfected and herpes simplex virus type 1-infected cells. The data indicate that after infection with herpes simplex virus type 1, specific changes occur in the proteins which normally are found associated with these polysomal mRNPs. These changes include both the appearance of new and possibly virus-specific proteins and the loss of normal host-specific proteins. The relationship of these changes to the patterns of protein synthesis in these cells is also discussed.  相似文献   

4.
5.
6.
7.
8.
MicroRNAs (miRNAs) regulate gene expression by mediating translational repression or mRNA degradation of their targets, and several miRNAs control developmental decisions through embryogenesis. In the developing heart, miRNA targets comprise key players mediating cardiac lineage determination. However, although several miRNAs have been identified as differentially regulated during cardiac development and disease, their distinct cell-specific localization remains largely undetermined, likely owing to a lack of adequate methods. We therefore report the development of a markedly improved approach combining fluorescence-based miRNA-in situ hybridization (miRNA-ISH) with immunohistochemistry (IHC). We have applied this protocol to differentiating embryoid bodies (EBs) as well as embryonic and adult mouse hearts, to detect miRNAs that were upregulated during EB cardiomyogenesis, as determined by array-based miRNA expression profiling. In this manner, we found specific co-localization of miR-1 to myosin positive cells (cardiomyocytes) of EBs, developing and mature hearts. In contrast, miR-125b and -199a did not localize to cardiomyocytes, as previously suggested for miR-199a, but were rather expressed in connective tissue cells of the heart. More specifically, by co-staining with α-smooth muscle actin (α-SMA) and collagen-I, we found that miR-125b and -199a localize to perivascular α-SMA stromal cells. Our approach thus proved valid for determining cell-specific localization of miRNAs, and the findings we present highlight the importance of determining exact cell-specific localization of miRNAs by sequential miRNA-ISH and IHC in studies aiming at understanding the role of miRNAs and their targets. This approach will hopefully aid in identifying relevant miRNA targets of both the heart and other organs.  相似文献   

9.
When in dissociated cell culture, heart muscle cells and fibroblasts taken from 8-day chick embryos do not remain unaffected by one another. Instead they interact from early incubation on. The interaction of dissociated heart cells appears to form the basis of cardiomyogenesis in vitro as obtained by various laboratories. Our cinematographs of monolayer cultures show six different phenomena: 1. When a fibroblast, wandering in a heart cell monolayer culture, enters the sphere of influence of a myocyte, contact between the two cell types occurs. To this effect the fibroblast changes its direction or its leading lamella ramifies. 2. The area of the muscle cell contacted by the fibroblast tends to dart out. The resulting myocyte process advances along the fibroblast. 3. Similar processes can be pulled out by the retracting fibroblast, and be guided passively to neighboring myocytes. 4. Thin threads produced in like manner and often repeatedly contacted by the handling lamella of the fibroblast subsequently broaden and develop into intercellular bridges. 5. A conspicuous reaction of myocytes after contact with fibroblasts is the accelerated initiation of the spreading phenomenon in which the muscle cell polarizes and starts to beat. 6. After contact, a myocyte can be transported to a neighboring muscle cell by a fibroblast. These six interactions result in the development of synchronously pulsating muscle cell units.  相似文献   

10.
11.
12.
Hedgehog (Hh) signaling plays a role in heart morphogenesis and can initiate cardiomyogenesis in P19 cells. To determine if Hh signaling is essential for P19 cell cardiomyogenesis, we determined which Hh factors are expressed and the effect of Hh signal transduction inhibitors. Here, we find that the Hh gene family and their downstream mediators are expressed during cardiomyogenesis but an active Hh signaling pathway is not essential. However, loss of Hh signaling resulted in a delay of BMP-4, GATA-4, Gli2, and Meox1 expression during cardiomyogenesis. By using Noggin-overexpressing P19 cells, we determined that Hh signaling was not active during Noggin-mediated inhibition of cardiomyogenesis. Thus, there is cross talk between the Hh and BMP signaling pathways and the Hh pathway appears important for timely cardiomyogenesis.  相似文献   

13.
Generation of a homogeneous and abundant population of skeletal muscle cells from human embryonic stem cells (hESCs) is a requirement for cell-based therapies and for a "disease in a dish" model of human neuromuscular diseases. Major hurdles, such as low abundance and heterogeneity of the population of interest, as well as a lack of protocols for the formation of three-dimensional contractile structures, have limited the applications of stem cells for neuromuscular disorders. We have designed a protocol that overcomes these limits by ectopic introduction of defined factors in hESCs - the muscle determination factor MyoD and SWI/SNF chromatin remodeling complex component BAF60C - that are able to reprogram hESCs into skeletal muscle cells. Here we describe the protocol established to generate hESC-derived myoblasts and promote their clustering into tridimensional miniaturized structures (myospheres) that functionally mimic miniaturized skeletal muscles7.  相似文献   

14.
Cardiac neural crest contributes to cardiomyogenesis in zebrafish   总被引:2,自引:0,他引:2  
In birds and mammals, cardiac neural crest is essential for heart development and contributes to conotruncal cushion formation and outflow tract septation. The zebrafish prototypical heart lacks outflow tract septation, raising the question of whether cardiac neural crest exists in zebrafish. Here, results from three distinct lineage-labeling approaches identify zebrafish cardiac neural crest cells and indicate that these cells have the ability to generate MF20-positive muscle cells in the myocardium of the major chambers during development. Fate-mapping demonstrates that cardiac neural crest cells originate both from neural tube regions analogous to those found in birds, as well as from a novel region rostral to the otic vesicle. In contrast to other vertebrates, cardiac neural crest invades the myocardium in all segments of the heart, including outflow tract, atrium, atrioventricular junction, and ventricle in zebrafish. Three distinct groups of premigratory neural crest along the rostrocaudal axis have different propensities to contribute to different segments in the heart and are correspondingly marked by unique combinations of gene expression patterns. Zebrafish will serve as a model for understanding interactions between cardiac neural crest and cardiovascular development.  相似文献   

15.
Hedgehog signaling induces cardiomyogenesis in P19 cells   总被引:7,自引:0,他引:7  
Sonic Hedgehog (Shh) is a critical signaling factor for a variety of developmental pathways during embryogenesis, including the specification of left-right asymmetry in the heart. Mice that lack Hedgehog signaling show a delay in the induction of cardiomyogenesis, as indicated by a delayed expression of Nkx2-5. To further examine a role for Shh in cardiomyogenesis, clonal populations of P19 cells that stably express Shh, termed P19(Shh) cells, were isolated. In monolayer P19(Shh) cultures the Shh pathway was functional as shown by the up-regulation of Ptc1 and Gli1 expression, but no cardiac muscle markers were activated. However, Shh expression induced cardiomyogenesis following cellular aggregation, resulting in the expression of factors expressed in cardiac muscle including GATA-4, MEF2C, and Nkx2-5. Furthermore, aggregated P19 cell lines expressing Gli2 or Meox1 also up-regulated the expression of cardiac muscle factors, leading to cardiomyogenesis. Meox1 up-regulated the expression of Gli1 and Gli2 and, thus, can modify the Shh signaling pathway. Finally, Shh, Gli2, and Meox1 all up-regulated BMP-4 expression, implying that activation of the Hedgehog pathway can regulate bone morphogenetic protein signals. Taken together, we propose a model in which Shh, functioning via Gli1/2, can specify mesodermal cells into the cardiac muscle lineage.  相似文献   

16.
17.
18.
19.
20.
lncRNAs功能注释和预测   总被引:1,自引:0,他引:1  
随着测序技术的发展,在各种哺乳动物中发现越来越多的长非编码RNAs(long non-coding RNAs,lncRNAs),但是大部分lncRNAs的功能却未知.鉴于lncRNAs在众多生物过程如免疫反应、发育和基因印迹中表现出对蛋白编码基因和其它非编码RNAs的重要调节作用,对lncRNAs的功能研究也成为生物学家和生物信息学家研究的热点. 其中,功能注释和预测是目前研究lncRNAs功能的主要方法之一.本文主要对lncRNAs功能注释和预测方法的研究进展作一综述,包括以下几个方面:基于共表达网络的方法、基于miRNAs的方法、基于蛋白质结合的方法、基于表观遗传修饰的方法以及基于ceRNA网络的方法. 为进一步研究lncRNAs的功能提供参考,同时为开发更加有效的注释或预测方法提供线索.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号