首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Most cases of medulloblastoma (MB) occur in young children. While the overall survival rate can be relatively high, current treatments combining surgery, chemo‐ and radiotherapy are very destructive for patient development and quality of life. Moreover, aggressive forms and recurrences of MB cannot be controlled by classical therapies. Therefore, new therapeutic approaches yielding good efficacy and low toxicity for healthy tissues are required to improve patient outcome. Cancer cells sustain their proliferation by optimizing their nutrient uptake capacities. The L‐type amino acid transporter 1 (LAT1) is an essential amino acid carrier overexpressed in aggressive human cancers that was described as a potential therapeutic target. In this study, we investigated the therapeutic potential of JPH203, a LAT1‐specific pharmacological inhibitor, on two independent MB cell lines belonging to subgroups 3 (HD‐MB03) and Shh (DAOY). We show that while displaying low toxicity towards normal cerebral cells, JPH203 disrupts AA homeostasis, mTORC1 activity, proliferation and survival in MB cells. Moreover, we demonstrate that a long‐term treatment with JPH203 does not lead to resistance in MB cells. Therefore, this study suggests that targeting LAT1 with JPH203 is a promising therapeutic approach for MB treatment.  相似文献   

2.
《Cell metabolism》2020,31(2):339-350.e4
  1. Download : Download high-res image (178KB)
  2. Download : Download full-size image
  相似文献   

3.
4.
Breast cancer is the most commonly diagnosed cancer among women. The primary treatment options include surgery, radiotherapy, chemotherapy, targeted therapy and hormone therapy. The effectiveness of breast cancer therapy varies depending on the stage and aggressiveness of the cancer, as well as individual factors. Advances in early detection and improved treatments have significantly increased survival rates for breast cancer patients. Nevertheless, specific subtypes of breast cancer, particularly triple-negative breast cancer, still lack effective treatment strategies. Thus, novel and effective therapeutic targets for breast cancer need to be explored. As substrates of protein synthesis, amino acids are important sources of energy and nutrition, only secondly to glucose. The rich supply of amino acids enables the tumor to maintain its proliferative competence through participation in energy generation, nucleoside synthesis and maintenance of cellular redox balance. Amino acids also play an important role in immune-suppressive microenvironment formation. Thus, the biological effects of amino acids may change unexpectedly in tumor-specific or oncogene-dependent manners. In recent years, there has been significant progress in the study of amino acid metabolism, particularly in their potential application as therapeutic targets in breast cancer. In this review, we provide an update on amino acid metabolism and discuss the therapeutic implications of amino acids in breast cancer.  相似文献   

5.
Amino acid restriction is among promising potential cancer treatment strategies. However, cancer cells employ a multitude of mechanisms to mount resistance to amino acid restriction, which impede the latter’s clinical development. Here we show that MAPK signaling activation in asparagine‐restricted melanoma cells impairs GSK3‐β‐mediated c‐MYC degradation. In turn, elevated c‐MYC supports ATF4 translational induction by enhancing the expression of the amino acid transporter SLC7A5, increasing the uptake of essential amino acids, and the subsequent maintenance of mTORC1 activity in asparagine‐restricted melanoma cells. Blocking the MAPK‐c‐MYC‐SLC7A5 signaling axis cooperates with asparagine restriction to effectively suppress melanoma cell proliferation. This work reveals a previously unknown axis of cancer cell adaptation to asparagine restriction and informs mechanisms that may be targeted for enhanced therapeutic efficacy of asparagine limiting strategies.  相似文献   

6.
7.
《Cell metabolism》2019,29(5):1151-1165.e6
  1. Download : Download high-res image (191KB)
  2. Download : Download full-size image
  相似文献   

8.
支链氨基酸的抗疲劳作用   总被引:2,自引:0,他引:2  
支链氨基酸作为必需氨基酸,不仅是合成机体蛋白质的原料,而且具有特殊的生理、生物学功能。其代谢与抗疲劳作用的机理在本文中进行了详细阐述。  相似文献   

9.
The mammalian target of rapamycin (mTOR) is an evolutionally conserved kinase which exists in two distinct structural and functional complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Of the two complexes, mTORC1 couples nutrient abundance to cell growth and proliferation by sensing and integrating a variety of inputs arising from amino acids, cellular stresses, energy status, and growth factors. Defects in mTORC1 regulation are implicated in the development of many metabolic diseases, including cancer and diabetes. Over the past decade, significant advances have been made in deciphering the complexity of the signaling processes contributing to mTORC1 regulation and function, but the mechanistic details are still not fully understood. In particular, how amino acid availability is sensed by cells and signals to mTORC1 remains unclear. In this review, we discuss the current understanding of nutrient-dependent control of mTORC1 signaling and will focus on the key components involved in amino acid signaling to mTORC1.  相似文献   

10.
雷帕霉素靶点蛋白(target of rapamycin,TOR)作为细胞内重要的生长和代谢调节中枢,主要通过形成两种复合物TORC1与TORC2发挥其功能。其中TORC1接收广泛的细胞内信号,如氨基酸水平、生长因子、能量以及缺氧状态等,通过调控蛋白质合成来促进细胞的增殖与生长。在这些信号当中,氨基酸不仅能够激活TORC1通路,还同时作为其他信号激活TORC1的必需条件。目前,对于生长因子和能量水平激活TORC1过程的分子机制已有较深入的认识,而对于氨基酸信号如何转导至TORC1的分子机制直到近年来才有了新的突破。该文通过梳理已发表的哺乳动物细胞中氨基酸信号调控mTORC1分子机制的相关实验结论,对该领域的研究方向进行了总结和展望。  相似文献   

11.
羊胎素中氨基酸测定与评价   总被引:1,自引:0,他引:1  
用日立L-8800型氨基酸自动分析仪测定了羊胎素中的氨基酸含量。结果表明羊胎素中18种氨基酸总量、必需氨基酸及药效氨基酸含量较高,提示羊胎素在营养学和医学上都有很高的研究价值。  相似文献   

12.
13.
14.
The nonessential amino acids are involved in a large number of functions that are not directly associated with protein synthesis. Recent studies using a combination of transorgan balance and stable isotopic tracers have demonstrated that a substantial portion of the extra‐splanchnic flux of glutamate, glutamine, glycine and cysteine derives from tissue synthesis. A key amino acid in this respect is glutamic acid. Little glutamic acid of dietary origin escapes metabolism in the small intestinal mucosa. Furthermore, because glutamic acid is the only amino acid that can be synthesized by mammals by reductive amination of a ketoacid, it is the ultimate nitrogen donor for the synthesis of other nonessential amino acids. Because the synthesis of glutamic acid and its product glutamine involve the expenditure of adenosine triphosphate (ATP), it seems possible that nonessential amino acid synthesis might have a significant bearing on the energetics of protein synthesis and, hence, of protein deposition. This paper discusses the topic of the energy cost of protein deposition, considers the metabolic physiology of amino acid oxidation and nonessential amino acid synthesis, and attempts to combine the information to speculate on the overall impact of amino acid metabolism on the energy exchanges of animals.  相似文献   

15.
16.
植物对氨基酸的吸收研究进展   总被引:1,自引:0,他引:1  
氨基酸在提高植物产量、改善产品品质、增强植株抗逆性、保护生态环境等方面发挥着越来越重要的作用,在农业生产中越来越受到重视.本文简述了氨基酸含量、氨基酸种类和植物种类对植物吸收氨基酸的影响,并对氨基酸营养研究进行展望,以期提高人们对植物氨基酸营养的认识,促进氨基酸在农业中的应用和发展.  相似文献   

17.
Rats bearing the Yoshida AH-130 ascites hepatoma show decreased activity of neutral amino acid transport in skeletal muscle measuredin vivo as the tissue accumulation of the analogue -amino [1-14C]isobutyrate (AIB). The decreased accumulation of AIB observed is not merely a consequence of the hypoinsulinaemia present in these animals (as a result of tumour burden) sincein vitro experiments carried out using incubations of isolated soleus muscles also showed a decreased uptake of neutral amino acids. In these preparations the addition of insulin results in similar increases in uptake both in the pair-fed controls and the tumour-bearing animals, thus suggesting similar insulin sensitivities. The decrease in amino acid uptake in soleus muscle is associated with a decrease in the activity of system A, while systems L and ASC show no particular changes as a result of the tumour growth. The kinetic characterisation of system A in the Yoshida-bearing rats shows a decrease in Vmax together with a decrease in KM in relation with the pair-fed animals.  相似文献   

18.
19.
ULK1 (unc-51 like kinase 1) is a serine/threonine protein kinase that plays a key role in regulating the induction of autophagy. Recent studies using autophagy-defective mouse models, such as atg5- or atg7-deficient mice, revealed an important function of autophagy in adipocyte differentiation. Suppression of adipogenesis in autophagy-defective conditions has made it difficult to study the roles of autophagy in metabolism of differentiated adipocytes. In this study, we established autophagy defective-differentiated 3T3-L1 adipocytes, and investigated the roles of Ulk1 and its close homolog Ulk2 in lipid and glucose metabolism using the established adipocytes. Through knockdown approaches, we determined that Ulk1 and Ulk2 are important for basal and MTORC1 inhibition-induced autophagy, basal lipolysis, and mitochondrial respiration. However, unlike other autophagy genes (Atg5, Atg13, Rb1cc1/Fip200, and Becn1) Ulk1 was dispensable for adipogenesis without affecting the expression of CCAAT/enhancer binding protein α (CEBPA) and peroxisome proliferation-activated receptor gamma (PPARG). Ulk1 knockdown reduced fatty acid oxidation and enhanced fatty acid uptake, the metabolic changes that could contribute to adipogenesis, whereas Ulk2 knockdown had opposing effects. We also found that the expression levels of insulin receptor (INSR), insulin receptor substrate 1 (IRS1), and glucose transporter 4 (SLC2A4/GLUT4) were increased in Ulk1-silenced adipocytes, which was accompanied by upregulation of insulin-stimulated glucose uptake. These results suggest that ULK1, albeit its important autophagic role, regulates lipid metabolism and glucose uptake in adipocytes distinctly from other autophagy proteins.  相似文献   

20.
The effects of excitatory amino acid agonists and alpha-amino-omega-phosphonocarboxylic acid antagonists on phosphoinositide hydrolysis in hippocampal slices of the 7-day neonatal rat were examined. Significant stimulation of [3H]inositol monophosphate formation was observed with ibotenate, quisqualate, L-glutamate, L-aspartate, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, L-homocysteate, and kainate. N-Methyl-D-aspartate had no effect. Of these agonists, ibotenate and quisqualate were the most potent and efficacious. Stimulations by ibotenate and quisqualate were partially inhibited by L-2-amino-4-phosphonobutyrate (10(-3) M), but this antagonist had no effect on L-glutamate, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, or kainate. At 10(-3) M, D,L-2-amino-3-phosphonopropionate completely inhibited ibotenate and quisqualate stimulations, partially inhibited L-glutamate stimulation, and had no effect on alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-, kainate-, or carbachol-induced [3H]inositol monophosphate formation. Concentration-effect experiments showed D,L-2-amino-3-phosphonopropionate to be five times more potent as an antagonist of ibotenate-stimulated phosphoinositide hydrolysis than L-2-amino-4-phosphonobutyrate. Thus in the neonatal rat hippocampus, like in the adult rat brain, D,L-2-amino-3-phosphonopropionate is a selective and relatively potent inhibitor of excitatory amino acid-stimulated phosphoinositide hydrolysis. Because this glutamate receptor is uniquely sensitive to D,L-2-amino-3-phosphonopropionate, these studies provide further pharmacological evidence for the existence of a novel excitatory amino acid receptor subtype that is coupled to phosphoinositide hydrolysis in brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号