首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Most bacteria contain one type I signal peptidase (SPase) for cleavage of signal peptides from secreted proteins. The developmental complex bacterium Streptomyces lividans has the ability to produce and secrete a significant amount of proteins and has four different type I signal peptidases genes (sipW, sipX, sipY, and sipZ) unusually clustered in its chromosome. Functional analysis of the four SPases was carried out by phenotypical and molecular characterization of the different individual sip mutants. None of the sip genes seemed to be essential for bacterial growth. Analysis of total extracellular proteins indicated that SipY is likely to be the major S. lividans SPase, since the sipY mutant strain is highly deficient in overall protein secretion and extracellular protease production, showing a delayed sporulation phenotype when cultured in solid medium.  相似文献   

2.
Thylakoids are the photosynthetic membranes in chloroplasts and cyanobacteria. The aqueous phase inside the thylakoid known as the thylakoid lumen plays an essential role in the photosynthetic electron transport. The presence and significance of thiol‐disulfide exchange in this compartment have been recognized but remain poorly understood. All proteins found free in the thylakoid lumen and some proteins associated to the thylakoid membrane require an N‐terminal targeting signal, which is removed in the lumen by a membrane‐bound serine protease called thylakoidal processing peptidase (TPP). TPP is homologous to Escherichia coli type I signal peptidase (SPI) called LepB. Genetic data indicate that plastidic SPI 1 (Plsp1) is the main TPP in Arabidopsis thaliana (Arabidopsis) although biochemical evidence had been lacking. Here we demonstrate catalytic activity of bacterially produced Arabidopsis Plsp1. Recombinant Plsp1 showed processing activity against various TPP substrates at a level comparable to that of LepB. Plsp1 and LepB were also similar in the pH optima, sensitivity to arylomycin variants and a preference for the residue at ?3 to the cleavage site within a substrate. Plsp1 orthologs found in angiosperms contain two unique Cys residues located in the lumen. Results of processing assays suggested that these residues were redox active and formation of a disulfide bond between them was necessary for the activity of recombinant Arabidopsis Plsp1. Furthermore, Plsp1 in Arabidopsis and pea thylakoids migrated faster under non‐reducing conditions than under reducing conditions on SDS‐PAGE. These results underpin the notion that Plsp1 is a redox‐dependent signal peptidase in the thylakoid lumen.  相似文献   

3.
Bacterial type I signal peptidase is a potential target for the development of novel antibacterial agents. In this study we demonstrate that a substrate based peptide aldehyde inhibits signal peptidases with a lower IC50 value than the lipopeptides described to date. The length of the core lipopeptide could be reduced by removing several amino acids from both termini. Conversion of this peptide to an aldehyde resulted in a molecule with an IC50 value of 0.09 μM when tested against Saccharomyces aureus SPase I, SpsB.  相似文献   

4.
Staphylococcus aureus is an important human pathogen whose virulence relies on the secretion of many different proteins. In general, the secretion of most proteins in S. aureus, as well as other bacteria, is dependent on the type I signal peptidase (SPase)-mediated cleavage of the N-terminal signal peptide that targets a protein to the general secretory pathway. The arylomycins are a class of natural product antibiotics that inhibit SPase, suggesting that they may be useful chemical biology tools for characterizing the secretome. While wild-type S. aureus (NCTC 8325) is naturally resistant to the arylomycins, sensitivity is conferred via a point mutation in its SPase. Here, we use a synthetic arylomycin along with a sensitized strain of S. aureus and multidimensional protein identification technology (MudPIT) mass spectrometry to identify 46 proteins whose extracellular accumulation requires SPase activity. Forty-four possess identifiable Sec-type signal peptides and thus are likely canonically secreted proteins, while four also appear to possess cell wall retention signals. We also identified the soluble C-terminal domains of two transmembrane proteins, lipoteichoic acid synthase, LtaS, and O-acyteltransferase, OatA, both of which appear to have noncanonical, internal SPase cleavage sites. Lastly, we identified three proteins, HtrA, PrsA, and SAOUHSC_01761, whose secretion is induced by arylomycin treatment. In addition to elucidating fundamental aspects of the physiology and pathology of S. aureus, the data suggest that an arylomycin-based therapeutic would reduce virulence while simultaneously eradicating an infection.  相似文献   

5.
Bacterial protein secretion is a highly orchestrated process that is essential for infection and virulence. Despite extensive efforts to predict or experimentally detect proteins that are secreted, the characterization of the bacterial secretome has remained challenging. A central event in protein secretion is the type I signal peptidase (SPase)-mediated cleavage of the N-terminal signal peptide that targets a protein for secretion via the general secretory pathway, and the arylomycins are a class of natural products that inhibit SPase, suggesting that they may be useful chemical biology tools for characterizing the secretome. Here, using an arylomycin derivative, along with two-dimensional gel electrophoresis and liquid chromatography-tandem mass spectrometry (LC-MS/MS), we identify 11 proteins whose secretion from stationary-phase Staphylococcus epidermidis is dependent on SPase activity, 9 of which are predicted to be translated with canonical N-terminal signal peptides. In addition, we find that the presence of extracellular domains of lipoteichoic acid synthase (LtaS) and the β-lactam response sensor BlaR1 in the medium is dependent on SPase activity, suggesting that they are cleaved at noncanonical sites within the protein. In all, the data define the proteins whose stationary-phase secretion depends on SPase and also suggest that the arylomycins should be valuable chemical biology tools for the study of protein secretion in a wide variety of different bacteria.  相似文献   

6.
Tail-anchored proteins are post-translationally targeted and inserted into the endoplasmic reticulum membrane. They do not use the co-translational signal-recognition particle (SRP)-dependent pathway, but rather utilize an ill-defined, ATP-dependent mechanism. Here, we show that a tail-anchored protein can be cleaved by signal peptidase and that the sequence requirements for efficient cleavage seem to be the same as for cleavage of co-translationally targeted SRP-dependent proteins.  相似文献   

7.
Type I signal peptidase is the enzyme responsible for cleaving off the amino-terminal signal peptide from proteins that are secreted across the bacterial cytoplasmic membrane. It is an essential membrane bound enzyme whose serine/lysine catalytic dyad resides on the exo-cytoplasmic surface of the bacterial membrane. This review discusses the progress that has been made in the structural and mechanistic characterization of Escherichia coli type I signal peptidase (SPase I) as well as efforts to develop a novel class of antibiotics based on SPase I inhibition. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.  相似文献   

8.
Type I signal peptidases (SPases) are membrane-bound endopeptidases responsible for the catalytic cleavage of signal peptides from secretory proteins. Here, we analysed the interaction between a bacterial type I SPase and preprotein substrates using surface plasmon resonance. The use of a home-made biosensor surface based on a mixed self-assembled monolayer of thiols on gold allowed qualitative and kinetic analysis. In vitro binding of purified preproteins to a covalently immobilised bacterial SPase was found to be rather efficient (apparent K(D)=10(-7)-10(-8)M). The signal peptide was shown to be a prerequisite for SPase binding and the nature of the mature part of the preprotein significantly affected SPase binding affinity. The developed biosensor containing immobilised SPase is of great importance for analysis of specificity at substrate binding level and for drug screening. In fact, this is the first report of a membrane protein that was covalently attached to a biosensor surface and that retained binding capacity.  相似文献   

9.
Archaeal protein trafficking is a poorly characterized process. While putative type I signal peptidase genes have been identified in sequenced genomes for many archaea, no biochemical data have been presented to confirm that the gene product possesses signal peptidase activity. In this study, the putative type I signal peptidase gene in Methanococcus voltae was cloned and overexpressed in Escherichia coli, the membranes of which were used as the enzyme source in an in vitro peptidase assay. A truncated, His-tagged form of the M. voltae S-layer protein was generated for use as the substrate to monitor the signal peptidase activity. With M. voltae membranes as the enzyme source, signal peptidase activity in vitro was optimal between 30 and 40°C; it was dependent on a low concentration of KCl or NaCl but was effective over a broad concentration range up to 1 M. Processing of the M. voltae S-layer protein at the predicted cleavage site (confirmed by N-terminal sequencing) was demonstrated with the overexpressed archaeal gene product. Although E. coli signal peptidase was able to correctly process the signal peptide during overexpression of the M. voltae S-layer protein in vivo, the contribution of the E. coli signal peptidase to cleavage of the substrate in the in vitro assay was minimal since E. coli membranes alone did not show significant activity towards the S-layer substrate in in vitro assays. In addition, when the peptidase assays were performed in 1 M NaCl (a previously reported inhibitory condition for E. coli signal peptidase I), efficient processing of the substrate was observed only when the E. coli membranes contained overexpressed M. voltae signal peptidase. This is the first proof of expressed type I signal peptidase activity from a specific archaeal gene product.  相似文献   

10.
A signal peptidase specifically required for the secretion of the lipoprotein of the Escherichia coli outer membrane cleaves off the signal peptide at the bond between a glycine and a cysteine residue. This cysteine residue was altered to a glycine residue by guided site-specific mutagenesis using a synthetic oligonucleotide and a plasmid carrying an inducible lipoprotein gene. The induction of mutant lipoprotein production was lethal to the cells. A large amount of the prolipoprotein was accumulated in the outer membrane fraction. No protein of the size of the mature lipoprotein was detected. These results indicate that the prolipoprotein signal peptidase requires a glyceride modified cysteine residue at the cleavage site.  相似文献   

11.
Solution NMR of signal peptidase, a membrane protein   总被引:1,自引:0,他引:1  
Useful solution nuclear magnetic resonance (NMR) data can be obtained from full-length, enzymatically active type I signal peptidase (SPase I), an integral membrane protein, in detergent micelles. Signal peptidase has two transmembrane segments, a short cytoplasmic loop, and a 27-kD C-terminal catalytic domain. It is a critical component of protein transport systems, recognizing and cleaving amino-terminal signal peptides from preproteins during the final stage of their export. Its structure and interactions with the substrate are of considerable interest, but no three-dimensional structure of the whole protein has been reported. The structural analysis of intact membrane proteins has been challenging and only recently has significant progress been achieved using NMR to determine membrane protein structure. Here we employ NMR spectroscopy to study the structure of the full-length SPase I in dodecylphosphocholine detergent micelles. HSQC-TROSY spectra showed resonances corresponding to approximately 3/4 of the 324 residues in the protein. Some sequential assignments were obtained from the 3D HNCACB, 3D HNCA, and 3D HN(CO) TROSY spectra of uniformly 2H, 13C, 15N-labeled full-length SPase I. The assigned residues suggest that the observed spectrum is dominated by resonances arising from extramembraneous portions of the protein and that the transmembrane domain is largely absent from the spectra. Our work elucidates some of the challenges of solution NMR of large membrane proteins in detergent micelles as well as the future promise of these kinds of studies.  相似文献   

12.
The Staphylococcus aureus Agr quorum-sensing system modulates the expression of extracellular virulence factors. The Agr system is controlled by an autoinducing peptide (AIP) molecule that is secreted during growth. In the AIP biosynthetic pathway, two proteolytic events are required to remove the leader and tail segments of AgrD, the peptide precursor of AIP. The only protein known to be involved in this pathway is AgrB, a membrane endopeptidase that removes the AgrD carboxy-tail. We designed a synthetic peptide substrate and developed an assay to detect peptidases that can remove the N-terminal leader of AIP. Several peptidase activities were detected in S. aureus extracts and these activities were present in both wild-type and agr mutant strains. Only one of these peptidases cleaved in the correct position and all properties of this enzyme were consistent with type I signal peptidase. Subsequent cloning and purification of the two known S. aureus signal peptidases, SpsA and SpsB, demonstrated that only SpsB catalysed this activity in vitro. To investigate the role of SpsB in AIP biosynthesis, SpsB peptide inhibitors were designed and characterized. The most effective inhibitor blocked SpsB activity in vitro and showed antibacterial activity against S. aureus. Importantly, the inhibitor reduced expression of an Agr-dependent reporter and inhibited AIP production in S. aureus, indicating a role for SpsB in quorum sensing.  相似文献   

13.
Useful solution nuclear magnetic resonance (NMR) data can be obtained from full-length, enzymatically active type I signal peptidase (SPase I), an integral membrane protein, in detergent micelles. Signal peptidase has two transmembrane segments, a short cytoplasmic loop, and a 27-kD C-terminal catalytic domain. It is a critical component of protein transport systems, recognizing and cleaving amino-terminal signal peptides from preproteins during the final stage of their export. Its structure and interactions with the substrate are of considerable interest, but no three-dimensional structure of the whole protein has been reported. The structural analysis of intact membrane proteins has been challenging and only recently has significant progress been achieved using NMR to determine membrane protein structure. Here we employ NMR spectroscopy to study the structure of the full-length SPase I in dodecylphosphocholine detergent micelles. HSQC-TROSY spectra showed resonances corresponding to approximately 3/4 of the 324 residues in the protein. Some sequential assignments were obtained from the 3D HNCACB, 3D HNCA, and 3D HN(CO) TROSY spectra of uniformly 2H, 13C, 15N-labeled full-length SPase I. The assigned residues suggest that the observed spectrum is dominated by resonances arising from extramembraneous portions of the protein and that the transmembrane domain is largely absent from the spectra. Our work elucidates some of the challenges of solution NMR of large membrane proteins in detergent micelles as well as the future promise of these kinds of studies.  相似文献   

14.
Based on the kinetic model of substrate phage proteolysis, we have formulated a strategy for best manipulating the conditions in screening phage display libraries for protease substrates (Sharkov, N. A., Davis, R. M., Reidhaar-Olson, J. F., Navre, M., and Cai, D. (2001) J. Biol. Chem. 276, 10788-10793). This strategy is exploited in the present study with signal peptidase SpsB from Staphylococcus aureus. We demonstrate that highly active substrate phage clones can be isolated from a phage display library by systematically tuning the selection stringency in screening. Several of the selected clones exhibit superior reactivity over a control, the best clone, SIIIRIII-8, showing >100-fold improvement. Because no conserved sequence features were readily revealed that could allow delineation of the active and unreactive clones, the sequences identified in five of the active clones were tested as synthetic dodecamers, Ac-AGX(8)GA-NH(2). Using electrospray ionization mass spectrometry, we show that four of these peptides can be cleaved by SpsB and that Ala is the P1 residue exclusively and Ala or Leu the P3 residue, in keeping with the (-3, -1) rule for substrate recognition by signal peptidase. Our successful screening with SpsB demonstrated the general applicability of the screening strategy and allowed us to isolate the first peptide substrates for the enzyme.  相似文献   

15.
16.
The removal of the signal peptide from a precursor protein is a crucial step of protein secretion. In order to improve Bacillus megaterium as protein production and secretion host, the influence of homologous type I signal peptidase SipM overproduction on recombinant Leuconostoc mesenteroides dextransucrase DsrS synthesis and export was investigated. The dsrS gene was integrated as a single copy into the chromosomal bgaM locus encoding beta-galactosidase. Desired clones were identified by blue-white selection. In this strain, the expression of sipM from a multicopy plasmid using its own promoter increased the amount of secreted DsrS 3.7-fold. This increase in protein secretion by SipM overproduction was next transferred to a high level DsrS production strain using a multicopy plasmid encoding sipM with its natural promoter and dsrS under control of a strong xylose-inducible promoter. No further increase in DsrS export were observed when this vector was carrying two sipM copies. Similarly, bicistronic sipM and dsrS high level expression did not enhance DsrS secretion, indicating the natural limitation of the approach. Interestingly, SipM-enhanced DsrS secretion also resulted in an overall increase of DsrS production.  相似文献   

17.
The transition between the closed and open conformations of the Sec61 complex permits nascent protein insertion into the translocation channel. A critical event in this structural transition is the opening of the lateral translocon gate that is formed by four transmembrane (TM) spans (TM2, TM3, TM7, and TM8 in Sec61p) to expose the signal sequence-binding site. To gain mechanistic insight into lateral gate opening, mutations were introduced into a lumenal loop (L7) that connects TM7 and TM8. The sec61 L7 mutants were found to have defects in both the posttranslational and cotranslational translocation pathways due to a kinetic delay in channel gating. The translocation defect caused by L7 mutations could be suppressed by the prl class of sec61 alleles, which reduce the fidelity of signal sequence recognition. The prl mutants are proposed to act by destabilizing the closed conformation of the translocation channel. Our results indicate that the equilibrium between the open and closed conformations of the protein translocation channel maintains a balance between translocation activity and signal sequence recognition fidelity.  相似文献   

18.
A structurally conserved protein translocation channel is formed by the heterotrimeric Sec61 complex in eukaryotes, and SecY complex in archaea and bacteria. Electron microscopy studies suggest that the channel may function as an oligomeric assembly of Sec61 or SecY complexes. Remarkably, the recently determined X-ray structure of an archaeal SecY complex indicates that the pore is located at the center of a single molecule of the complex. This structure suggests how the pore opens perpendicular to the plane of the membrane to allow the passage of newly synthesized secretory proteins across the membrane and opens laterally to allow transmembrane segments of nascent membrane proteins to enter the lipid bilayer. The electron microscopy and X-ray results together suggest that only one copy of the SecY or Sec61 complex within an oligomer translocates a polypeptide chain at any given time.  相似文献   

19.
Highly purified preparations of signal peptidase I (36 kDa) were found to undergo an apparent inter-autocatalytic degradation at 4 degrees C and 37 degrees C. The disappearance of the 36 kDa protein coincided with the stable appearance of a 31 kDa and a 5 kDa species. Amino-terminal sequencing of the 31 kDa product indicated a site specific cleavage following Ala38-Gln-Ala of signal peptidase I. The 31 kDa fragment was purified and shown to have 100-fold less activity than the native enzyme, with pre-maltose binding protein as a substrate.  相似文献   

20.
Signal peptidase (SPase) I is responsible for the cleavage of signal peptides of many secreted proteins in bacteria. Because of its unique physiological and biochemical properties, it serves as a potential target for development of novel antibacterial agents. In this study, we report the production, isolation, and structure determination of a family of structurally related novel lipoglycopeptides from a Streptomyces sp. as inhibitors of SPase I. Detailed spectroscopic analyses, including MS and NMR, revealed that these lipoglycopeptides share a common 14-membered cyclic peptide core, an acyclic tripeptide chain, and a deoxy-alpha-mannose sugar, but differ in the degree of oxidation of the N-methylphenylglycine residue and the length and branching of the fatty acyl chain. Biochemical analysis demonstrated that these peptides are potent and competitive inhibitors of SPase I with K(i) 50 to 158 nm. In addition, they showed modest antibacterial activity against a panel of pathogenic Gram-positive and Gram-negative bacteria with minimal inhibitory concentration of 8-64 microm against Streptococcus pneumonniae and 4-8 microm against Escherichia coli. Notably, they mechanistically blocked the protein secretion in whole cells as demonstrated by inhibiting beta-lactamase release from Staphylococcus aureus. Taken together, the present discovery of a family of novel lipoglycopeptides as potent inhibitors of bacterial SPase I may lead to the development of a novel class of broad-spectrum antibiotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号