首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Although best known for its fossil hominins, the Omo-Turkana Basin of Kenya and Ethiopia is the source of one of the best records of vertebrate evolution from the Late Cenozoic of Africa. Located near the heart of the East African Rift Valley, the basin serves as an important frame of reference for the continent. The fossil record from this region plays a key role in our efforts to understand the environmental and ecological context of human evolution in Africa. The Omo-Turkana faunal data shed light on key questions of human evolution: What kinds of environments did early humans inhabit? How did these environments change over time? What is the relationship between faunal change in East Africa and broader patterns of climatic change?  相似文献   

2.
稳定同位素作为一种自然标记物是研究鸟类生态学的重要工具之一,与传统研究方法相比其呈现的信息更为真实全面,是一种日趋成熟的鸟类生态学研究方法。近几年该方法在鸟类迁徙生态学、取食生态学等方面取得较大成就,展现出传统研究方法无可比拟的优越性。但目前该方法在我国鸟类生态学上的应用较少,基于此,从迁徙、取食等方面分别阐述稳定同位素在鸟类生态学上的应用,以促进我国鸟类生态学的快速发展和推动稳定同位素生态学与其它学科的交叉融合。  相似文献   

3.
Stable isotope analysis has become an important tool in ecology over the last 25 years. A wealth of ecological information is stored in animal tissues in the relative abundances of the stable isotopes of several elements, particularly carbon and nitrogen, because these isotopes navigate through ecological processes in predictable ways. Stable carbon and nitrogen isotopes have been measured in most primate taxonomic groups and have yielded information about dietary content, dietary variability, and habitat use. Stable isotopes have recently proven useful for addressing more fine‐grained questions about niche dynamics and anthropogenic effects on feeding ecology. Here, we discuss stable carbon and nitrogen isotope systematics and critically review the published stable carbon and nitrogen isotope data for modern primates with a focus on the problems and prospects for future stable isotope applications in primatology. Am. J. Primatol. 74:969‐989, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
The Omo-Turkana Basin, including the hominin fossil sites around Lake Turkana and the sites along the lower reaches of the Omo River, has made and continues to make an important contribution to improving our murky understanding of human evolution. This review highlights the various ways the Omo-Turkana Basin fossil record has contributed to, and continues to challenge, interpretations of human evolution. Despite many diagrams that look suspiciously like comprehensive hypotheses about human evolutionary history, any sensible paleoanthropologist knows that the early hominin fossil record is too meager to do anything other than offer very provisional statements about hominin taxonomy and phylogeny. If history tells us anything, it is that we still have much to learn about the hominin clade. Thus, we summarize the current state of knowledge of the hominin species represented at the Omo-Turkana Basin sites. We then focus on three specific topics for which the fossil evidence is especially relevant: the origin and nature of Paranthropus; the origin and nature of early Homo; and the ongoing debate about whether the pattern of human evolution is more consistent with speciation by cladogenesis, with greater taxonomic diversity or with speciation by anagenetic transformation, resulting in less taxonomic diversity and a more linear interpretation of human evolutionary history.  相似文献   

5.
王敏  徐国良 《应用生态学报》2013,24(6):1754-1760
稳定同位素技术的发展和应用是20世纪90年代生态学研究方法最重要的进步之一.许多生态学过程都伴随着同位素比率的变化,根据这些变化可以追踪生态系统的物质循环和能量流动.近年来,许多学者把稳定同位素技术引入到土壤生态学,主要用于研究土壤碳循环和土壤生物之间的营养关系,在很大程度上提升了对地下生态系统的理解.跳虫作为土壤动物群落的重要组分,它的食性和营养位置一直存在着许多不确定性.稳定同位素技术的应用,为确定跳虫的食物来源、营养位置和营养关系提供了一个强大的工具.本文综述了稳定同位素技术在跳虫食性和营养级研究上的应用,并指出了不足之处以及今后的发展方向.  相似文献   

6.
Interactions with humans impact many aspects of behavior and ecology in nonhuman primates. Because of the complexities of the human–nonhuman primate interface, methods are needed to quantify the effects of anthropogenic interactions, including their intensity and differential impacts between nonhuman primate groups. Stable isotopes can be used to quickly and economically assess intergroup dietary variation, and provide a framework for the development of specific hypotheses about anthropogenic impact. This study uses stable carbon and nitrogen isotope analysis to examine intraspecific variation in diet between five groups of Barbary macaques, Macaca sylvanus, in the Upper Rock Nature Reserve, Gibraltar. Analysis of hair from 135 macaques showed significant differences in δ13C and δ15N values between a group with minimal tourist contact and groups that were main tourist attractions. Because we observed no overt physiological or substantial behavioral differences between the groups, feeding ecology is the most likely cause of any differences in stable isotope ratios. Haphazard provisioning by tourists and Gibraltarians is a likely source of dietary variation between groups. Stable isotope analysis and observational data facilitate a deeper understanding of the feeding ecology of the Barbary macaques relevant to the role of an anthropogenic ecology for the species.  相似文献   

7.
稳定同位素技术在植物水分利用研究中的应用   总被引:24,自引:0,他引:24  
近20a稳定同位素技术在植物生态学研究中的应用得到了长足发展,使得对植物与水分关系也有了更深一步的了解。介绍稳定同位素性碳、氢、氧同位素在研究植物水分关系中的应用及进展,以期能为国内植物水分利用研究提供参考。由于植物根系从土壤中吸收水分时并不发生同位素分馏,对木质部水分同位素分析有助于对植物利用水分来源,生态系统中植物对水分的竞争和利用策略的研究,更好地了解生态系统结构与功能。稳定碳同位素作为植物水分利用效率的一个间接指标,在不同水分梯度环境中,及植物不同代谢产物与水分关系中有着广泛的应用。同位素在土壤-植被-大气连续体水分中的应用,有助于了解生态系统的水分平衡。随着稳定同位素方法的使用,植物与水分关系的研究将取得更大的进展。  相似文献   

8.
Stable isotope biogeochemistry is useful for quantifying the feeding ecology of modern and extinct primates. Over the past three decades, substantial advances have been made in our knowledge of the physiological causes of isotopic patterns as well as effective methodology to prepare samples for isotopic analysis. Despite these advances, the potential of stable isotope biogeochemistry has yet to be fully exploited by primate researchers, perhaps due to the prolific and somewhat daunting nature of the isotopic literature. I here aim to present a cogent overview of stable isotope applications to nonhuman primate feeding ecology. I review the factors that influence ecological patterns in carbon, nitrogen, and oxygen stable isotopes. I present methods for collecting and preparing samples of tooth enamel and bone mineral hydroxyapatite, bone collagen, fur and hair keratin, blood, feces, and urine for isotope analysis. I discuss both the existing and potential applications of these isotopic patterns to primate feeding ecology. Lastly, I point out some of the pitfalls to avoid when interpreting and comparing isotopic results.  相似文献   

9.
  • 1 Stable isotope analysis (SIA) has the potential to become a widespread tool in mammalian ecology, because of its power in resolving the ecological and behavioural characteristics of animals. Although applications of the technique have enhanced our understanding of mammalian biology, it remains underused. Here we provide a review of previous applications to the study of extant mammals, drawing when appropriate on examples from the wider ecological literature, to identify the potential for future development of the approach.
  • 2 Stable isotope analysis has been applied successfully to understanding the basic foraging decisions of mammals. However, SIA generates quantitative data on a continuous scale meaning that the approach can be particularly powerful in the characterization of community metrics, such as dimensions of resource partitioning within species assemblages or nutrient dynamics in food chains. Resolving spatial and temporal patterns of individual, intraspecific and interspecific resource use is of fundamental importance in animal ecology and evolutionary biology and SIA will emerge as a critical tool in these fields.
  • 3 Geographical differences in naturally occurring stable isotopes have allowed ecologists to describe large‐scale mammal migrations. Several isotopic gradients exist at smaller spatial scales, which can provide finer resolution of spatial ecology.
  • 4 A combination of foraging and movement decisions is of prime importance in the study of ecotoxicology, since this discipline requires quantitative understanding of exposure risk.
  相似文献   

10.
Stable isotope methods in biological and ecological studies of arthropods   总被引:3,自引:1,他引:2  
This is an eclectic review and analysis of contemporary and promising stable isotope methodologies to study the biology and ecology of arthropods. It is augmented with literature from other disciplines, indicative of the potential for knowledge transfer. It is demonstrated that stable isotopes can be used to understand fundamental processes in the biology and ecology of arthropods, which range from nutrition and resource allocation to dispersal, food‐web structure, predation, etc. It is concluded that falling costs and reduced complexity of isotope analysis, besides the emergence of new analytical methods, are likely to improve access to isotope technology for arthropod studies still further. Stable isotopes pose no environmental threat and do not change the chemistry or biology of the target organism or system. These therefore represent ideal tracers for field and ecophysiological studies, thereby avoiding reductionist experimentation and encouraging more holistic approaches. Considering (i) the ease with which insects and other arthropods can be marked, (ii) minimal impact of the label on their behaviour, physiology, and ecology, and (iii) environmental safety, we advocate more widespread application of stable isotope technology in arthropod studies and present a variety of potential uses.  相似文献   

11.
《Plant Ecology & Diversity》2013,6(2-3):117-130
We review the relevance and use of stable isotopes for the study of plant community succession. Stable isotope measurements provide information on the origin of resources acquired by plants, the processes governing resource uptake and transformation, and the physiological and environmental conditions of plant growth. When combined with measurements of the stable isotope ratio values of soil microbial biomass, soil organic matter and plant litter, isotope measurements of plants can indicate effects of successional changes on ecosystem processes. However, their application to questions of plant succession and ecosystem change is limited by the degree to which the underlying assumptions are met in each study, and complementary measures may be required, depending upon the question of interest. First, we discuss the changes that occur in the stable isotope composition of plants and ecosystems with ontogeny and species replacements, as well as their potential evolutionary significance. Second, we discuss the imprints of plant competition and facilitation on leaf and wood tissue, as well as how stable isotopes can provide novel insights on the mechanisms underlying plant interactions. Finally, we discuss the capacity for stable isotope measurements to serve as a proxy record for past disturbances such as fire, logging and cyclones.  相似文献   

12.
Ants are prominent components of most terrestrial arthropod food webs, yet due to their highly variable diet, the role ants play in arthropod communities can be difficult to resolve. Stable isotope analysis is a promising method for determining the dietary history of an organism, and has the potential to advance our understanding of the food web ecology of social insects. However, some unique characteristics of eusocial organisms can complicate the application of this technique to the study of their trophic ecology. Using stable isotopes of N and C, we investigated levels of intraspecific variation both within and among colonies. We also examined the effect of a common preservation technique on δ15N and δ13C values. We discuss the implications of our results on experimental design and sampling methods for studies using stable isotopes to investigate the trophic ecology of social insects. Received 4 February 2005; revised 23 June 2005; accepted 4 July 2005.  相似文献   

13.
稳定性同位素探测技术在微生物生态学研究中的应用   总被引:10,自引:0,他引:10  
稳定性同位素标记技术同分子生物学技术相结合而发展起来的稳定性同位素探测技术(stableisotope probing,SIP),在对各种环境中微生物群落组成进行遗传分类学鉴定的同时,可确定其在环境过程中的功能,提供复杂群落中微生物相互作用及其代谢功能的大量信息,具有广阔的应用前景.其基本原理是:将原位或微宇宙(microcosm)的环境样品暴露于稳定性同位素富集的基质中,这些样品中存在的某些微生物能够以基质中的稳定(性同位素为碳源或氮源进行物质代谢并满足其自身生长需要,基质中的稳定性同位素被吸收同化进入微生物体内,参与各类物质如核酸(DNA和RNA)及磷脂脂肪酸(PLFA)等的生物合成,通过提取、分离、纯化、分析这些微生物体内稳定性同位素标记的生物标志物,从而将微生物的组成与其功能联系起来.在介绍稳定性同位素培养基质的选择及标记方法、合适的生物标志物的选择及提取分离方法的基础上,举例阐述了此项技术在甲基营养菌、有机污染物降解菌、根际微生物生态、互营微生物、宏基因组学等方面的应用.  相似文献   

14.
树轮稳定同位素比率能有效地记录树木生长过程中气候环境变化信息及树木的生理响应机制。年内高分辨率树轮稳定同位素比率则能够提供更为详细的气候环境信息,揭示树木对季节尺度气候环境变化的生理生态响应机制,在古气候和全球变化生态学研究方面显示出巨大的潜力。本文收集了1990年以来发表的树轮年内高分辨率稳定同位素比率研究论文,从样品剥离方法、α-纤维素化学提取方法以及应用等方面综述了其研究进展,展望了年内高分辨率树轮稳定同位素记录研究的潜力和未来发展方向。  相似文献   

15.
Ignorance of the location or inaccessible locations of lifestages can impede the study and management of species. We used stable isotopes of carbon and nitrogen to identify the habitats and diets and to estimate the duration of a 'missing' lifestage: the early juvenile stage of the green turtle, Chelonia mydas. Stable isotopes in scute from young herbivorous green turtles in shallow-water habitats revealed that they spend 3-5 years as carnivores in oceanic habitats before making a rapid ontogenetic shift in diet and habitat. Stable isotopes in persistent and continuously growing tissues, such as some fish scales, bird bills and claws and mammal hair and claws, can be used to evaluate the ecology of inaccessible lifestages.  相似文献   

16.
Stable isotope analyses of a uranium-series-dated stalagmite from South Africa provide a record of climate changes for the periods 4400–4000 years and 800 years ago to recent, interrupted by a prolonged growth hiatus. Generally enriched stable oxygen isotope values, interpreted here to indicate more humid conditions, occurred around 800 years ago. Subsequently a marked depletion in oxygen and carbon isotope values occurred about 600 years ago, reflecting, we believe, shifts toward drier, cooler conditions as the regional indication of the Little Ice Age. This period with depleted, yet oscillating isotope values, is replaced by a period with enriched isotopes until recent times. The record is notable for sharp shifts in isotopic values, on the scale of decades, which reflect rapid oscillations in local climate conditions.  相似文献   

17.
雷帅  郭怡 《人类学学报》2022,41(3):501-513
饮食在人类文化的起源与演变中扮演着重要角色,而牙齿作为饮食信息的主要载体,从不同角度为复原古代人类饮食谱系提供了可能。作为人类咀嚼行为、饮食结构及生业模式的直接反映,口腔疾病和牙齿表面微观痕迹的体质人类学分析显得尤其重要。牙齿中微量元素和稳定同位素的检测,对于揭示古代人类的迁徙与流动、生命在不同阶段的摄食行为与营养状况、农业的起源与发展等问题具有着不可估量的作用。本文在回顾考古遗址中出土人类牙齿的重要性及研究方法的多样性基础上,结合牙齿的生长发育特征,绘制了不同牙位各生长序列所匹配的人类年龄图谱,并参照此图谱,提出了全新的牙本质连续切片取样方法。本文构想从体质人类学与碳、氮等稳定同位素分析的角度出发,以牙本质的连续切片、肢骨及肋骨等人体组织为关联式地研究材料,在探索古人类个体生命史的基础上展望“代际考古”。  相似文献   

18.
个体身份确认是自然灾害、空难、爆炸、火灾、交通事故等事(案)件处置中的一项重要工作。利用稳定同位素分布的地域差异性对个体进行溯源,可以为个体身份确认提供重要信息。本文简要介绍了稳定同位素技术原理,系统阐述了用于个体溯源的元素类型和不同人体组织中稳定同位素蕴含的特征信息,并对该技术在个体溯源中的应用现状、存在问题以及未来发展进行了分析和展望。  相似文献   

19.
Stable isotopes of carbon and nitrogen in soil ecological studies   总被引:3,自引:0,他引:3  
The development of stable isotope techniques is one of the main methodological advances in ecology of the last decades of the 20th century. Many biogeochemical processes are accompanied by changes in the ratio between stable isotopes of carbon and nitrogen (12C/13C and 14N/15N), which allows different ecosystem components and different ecosystems to be distinguished by their isotopic composition. Analysis of isotopic composition makes it possible to trace matter and energy flows through biological systems and to evaluate the rate of many ecological processes. The main concepts and methods of stable isotope ecology and patterns of stable isotope fractionation during organic matter decomposition are considered with special emphasis on the fractionation of isotopes in food chains and the use of stable isotope studies of trophic relationships between soil animals in the field.  相似文献   

20.
1. The use of stable isotope analysis (SIA) in ecological research has dramatically increased in recent years largely because it allows researchers to investigate ecological questions that have been previously difficult to address. 2. Ecological applications of SIA include estimating fundamental niche space and overlap, evaluating trophic or species level interactions, and investigating food web structure. Increasingly, researchers have been incorporating SIA in studies of animal migration, disease transmission, diet composition, nutrient assimilation, and body condition among others. 3. Studies using SIA to evaluate the ecology of terrestrial insects have lagged behind other taxonomic groups. This poor representation of stable isotope studies in publications likely stems from a lack of familiarity of entomologists with this technique. 4. An improved understanding of SIA, as well as the advantages and disadvantages specifically related to insect research, will benefit the field of entomology. In addition, insect-model systems provide unique opportunities for entomologists to incorporate SIA in their research to advance our knowledge of insect biology and the stable isotope ecology of insects. 5. We provide background information on stable isotopes, explain sources of isotopic variation, describe the processes of how isotopes are differentially routed and incorporated into an individual's tissues, explain the principles that influence isotopic fractionation and discrimination, highlight different methods and advancements in SIA, review innovative stable isotope studies, and provide an overview of common mistakes, considerations, and future directions entomologists can explore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号