首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The root system of mature wheat Triticum aestivum Marts Doveis dominated by the 7 to 15 adventitious roots which emergefrom the perimeter of the stem base, pointing radially outwardsand downwards. The basal, coronal region of these roots is thickand unbranched, attached to a rhizosheath of earth by a densecovering of root hairs and stiffened in bending by lignificationof outer layers of the cortex. Root lodging of plants involves bending of the coronal rootsat their base and axial movement of leeward and windward rootsthrough the soil; their resistance to these motions providemoments resisting lodging. A model of anchorage was producedby summing the resistance of each root to both forms of motionto give two anchorage components. The model was tested in aseries of mechanical experiments in which simulated lodgingwas followed by loading of individual roots; results supportedthe anchorage model and suggested that in the experimental conditionsthe two components of anchorage were approximately equal inmagnitude. The stem was about 30% stronger than the anchoragesystem. The coronal anchorage roots made up 4.4% of total dry mass;it is suggested that anchorage could be improved either by increasinginvestment in this region or by altering root orientation. Sequentialdevelopment of seminal and adventitious root systems is relatedto the changes in anchorage requirement with age.  相似文献   

2.
The effects of nitrogen and plant growth regulators (stem shorteners)on root and shoot characteristics associated with lodging resistancewere investigated in two winter wheat (Triticum aestivum L.)cultivars of contrasting lodging resistance: the susceptibleGalahad and the resistant Hereward. The morphology and mechanicalstrength of the stems and anchorage systems grown at two levelsof nitrogen and with or without growth regulators were measuredand related to the incidence of lodging recorded in a fieldtrial. In both cultivars high levels of nitrogen increased theheight of the stem, thereby increasing the ‘self-weight’moment transmitted into the ground and weakened both the stemsand the anchorage coronal roots. As a result, the anchoragestrength was also reduced, plants failing in the root systemin simulated lodging tests. Growth regulators, in contrast,had little effect on the bending strength of the shoots androot systems, but reduced plant height so that the over turningmoments generated by the weight of the shoot were less. Therewere also differences between cultivars: Galahad plants hadweaker anchorage due to the smaller number and lower strengthof the coronal roots. The morphological and mechanical measureswere used to calculate a safety factor against both stem androot lodging. Five factors were found to influence the safetyfactors, these were: cultivar type, the type of lodging, therate of nitrogen and growth regulator application, and time,being lowest in Galahad plants at high levels of nitrogen andwithout growth regulators and at grain filling when the earswere heaviest. This was consistent with the observed patternof lodging: root lodging occurred at grain filling and onlyin Galahad which had been treated with high nitrogen rates,most strongly in plants without growth regulators. Key words: Lodging, safety factors, anchorage, ‘self-weight’ moment  相似文献   

3.
The Anchorage Mechanics of Maize, Zea mays   总被引:2,自引:0,他引:2  
The anchorage system of mature maize Zea mays was investigatedby combining morphological and anatomical study of the rootsystem with mechanical tests on roots and with studies in whichplants were pulled over. The root system is dominated by 20–30adventitious roots which emerge in rings from the stem basepointing radially downwards and outwards, approximately 30°from the vertical. Roots are strengthened near their base bya heavily lignified exodermis which makes them rigid in bending;distally, strength and rigidity both decrease because rootsbecome thinner and less lignified. When plants were pulled over,a maximum anchorage moment of 5–20 Nm was mobilized atangles of 8–10°, larger plants having stronger anchorage.Movement was initially centred on the leeward side of the stem,anchorage being due to the resistance of both windward and leewardroots to axial motion through the soil and to bending. At displacementsover 10°, however, leeward roots buckled under combinedbending and compression and the centre of rotation shifted tothe windward perimeter of the root system; subsequent movementof the cone of roots and soil was resisted only by the bearingstrength of the soil beneath it. The differences between anchorage failure in balsam and sunflowersand that in maize probably results from the lower angular spreadand the weakness in compression of the maize roots which preventsthe leeward side of the root system from bearing large downwardloads. The system behaves more like that of wheat; these resultssuggest that the lodging resistance of both plants may be improvedby increasing the bending strength and angle of spread of theadventitious roots. Key words: Zea mays, roots, anchorage  相似文献   

4.
The structural development of glasshouse-grown rice Oryza sativa L. var. Nerica 1 was studied in relation to its stability against lodging. The morphology and mechanical properties of both the stem and roots were examined from tillering, 4 weeks after transplantation up to maturity, together with plant weight distribution and anchorage strength. The "factors of safety" against root and stem failure were subsequently calculated throughout development. Rice plants showed similar morphology to wheat, although they possessed around twice as many tillers per plant and 10 times as many coronal roots. The mechanics of anchorage were also similar. The strength and rigidity of individual tillers increased throughout development as the plants grew taller and heavier and were around 15 times greater than in wheat. By contrast, individual root bending strength, the number of roots, and the anchorage strength levelled off earlier, and anchorage strength was only around twice that in wheat. Consequently, while the self-weight safety factor against stem failure was much higher than in wheat, increasing until late on in development from around 30 to 150, the self-weight safety factor against root anchorage failure was similar to wheat, decreasing from around 15 to 5. Consequently, plants subjected to anchorage tests always failed in their root system rather than their shoot system. The results suggest that, in the field, rice plants would be more likely to undergo root lodging than stem lodging, and that breeding efforts to reduce the incidence of lodging should act to strengthen the rather weak coronal roots.  相似文献   

5.
The anchorage mechanics of mature winter-sown oilseed rape (‘Envol’)were investigated by combining a morphological and mechanicalstudy of the root system with anchorage tests on real and modelplants. Oilseed rape plants were anchored by a rigid tap root;the few laterals all emerged below the centre of rotation ofthe root system (approx. 30 mm below the soil surface). Whenplants were pulled over, the tap root bent and the top 30 mmmoved in the soil towards the direction of pull, creating acrevice on the opposite side. The maximum anchorage moment was2.9 ± 0.36 N m. Two main components of anchorage wereidentified: the bending resistance of the tap root and the resistanceof the soil on the near side to compression. The relative importanceof these components was determined by measuring both the bendingresistance of the tap root, and the resistance of metal tubesof varying diameter, inserted to various depths in the soil,to being pulled over. These tests showed that the tap root bendingmoment at failure could account for around 40% of anchoragemoment, while soil resistance could account for around 60%.The model tests on the tubes also help to shed light on theway in which the dimensions of tap roots will influence theiranchorage capability. Copyright 2001 Annals of Botany Company Anchorage, lodging, root bending resistance, mechanical properties, oilseed rape, Brassica napus L  相似文献   

6.
The effects of soil bulk density and hence strength on two contrastingspecies of herbaceous annuals, the dicot sunflower (HelianthusannuusL.) and the monocot maize (Zea maysL.), were investigatedby comparing the morphology and mechanics of field-grown plantsin soil with a low and high bulk density. Soil with a low bulkdensity had a significantly lower penetration resistance (118±4.4kPa) than the high bulk density soil (325±12.2 kPa;P<0.0001).Soil strength affected shoot and root systems of both speciesbut had no significant effect on shoot height. In both speciesroots were thicker closer to the stem base in strong soil comparedto those in weaker soil. Sunflower tap-roots growing in strongsoil tapered more rapidly than those in weak soil. Only in maize,however, were roots growing in weak soil stiffer than thosein strong soil. Despite only small absolute differences in thepenetration resistance of the soil both species growing in strongsoil had greater anchorage strength than those in weak soil.As a consequence more plants in weak soil lodged compared withthose growing in strong soil. This study shows that plants can,to a small extent, respond to changes in soil strength, butthat changes do not appear to compensate fully for alterationsin soil conditions. Furthermore it may be possible, by manipulatingsoil strength, to control lodging.Copyright 1999 Annals of BotanyCompany Roots, compaction, soil strength, anchorage mechanics, bulk density, thigmomorphogenesis, lodging,Helianthus annuusL.,Zea maysL.  相似文献   

7.
Fourcaud T  Ji JN  Zhang ZQ  Stokes A 《Annals of botany》2008,101(8):1267-1280
BACKGROUND AND AIMS: The Finite Element Method (FEM) has been used in recent years to simulate overturning processes in trees. This study aimed at using FEM to determine the role of individual roots in tree anchorage with regard to different rooting patterns, and to estimate stress distribution in the soil and roots during overturning. METHODS: The FEM was used to carry out 2-D simulations of tree uprooting in saturated soft clay and loamy sand-like soil. The anchorage model consisted of a root system embedded in a soil block. Two root patterns were used and individual roots removed to determine their contribution to anchorage. KEY RESULTS: In clay-like soil the size of the root-soil plate formed during overturning was defined by the longest roots. Consequently, all other roots localized within this plate had no influence on anchorage strength. In sand-like soil, removing individual root elements altered anchorage resistance. This result was due to a modification of the shape and size of the root-soil plate, as well as the location of the rotation axis. The tap root and deeper roots had more influence on overturning resistance in sand-like soil compared with clay-like soil. Mechanical stresses were higher in the most superficial roots and also in leeward roots in sand-like soil. The relative difference in stresses between the upper and lower sides of lateral roots was sensitive to root insertion angle. Assuming that root eccentricity is a response to mechanical stresses, these results explain why eccentricity differs depending on root architecture. CONCLUSIONS: A simple 2-D Finite Element model was developed to better understand the mechanisms involved during tree overturning. It has been shown how root system morphology and soil mechanical properties can modify the shape of the root plate slip surface as well as the position of the rotation axis, which are major components of tree anchorage.  相似文献   

8.
Root architecture and tree stability   总被引:17,自引:3,他引:14  
M. P. Coutts 《Plant and Soil》1983,71(1-3):171-188
Summary Root anchorage is discussed with a view to determining the optimum use of root material for enhanced stability. Field observations were made on Sitka spruce root systems while lateral forces were applied to the stem with a winch to pull the tree over. Measurements included the applied force, angles of inclination, soil and root movement, timing of the sound of root breakage using buried microphones, weight and shape of the root-soil plate and damage to the roots.Components of anchorage include the dimensions and mass of the root-soil plate levered from the ground by the displaced stem, and tensile strength of roots and soil beneath the plate; root and soil tensile strength and root/soil resistance on the windward perimeter; and on the lee side the stiffness of the hinge at the fulcrum.Strength properties of roots and soil are reviewed. Models devised for landslip are extended to consider behaviour under tension, of roots singly and in groups, and the concept is developed of a critical rooting density at which root/soil resistance exceeds soil strength, giving rise to the characteric root-soil plate on uprooted trees. The lee side part of the root-soil plate acts as a cantilevered beam and determines the distance of the fulcrum from the tree. Physical laws defining the reduced stiffness of beams as a result of subdivision, indicate the importance of the number/size distribution of roots and weakening effects of branching.On the windward side upward movement of the root-soil plate causes sequential breakage of soil and roots. Under an increasing applied load, failure occurs in parts of the soil-root system before the maximum force for uprooting is achieved. A preliminary approach is made to modelling where the changing contributions of the components of anchorage are allowed for throughout the uprooting process.  相似文献   

9.
Model of the mechanics of uprooting lead to the identificationof ‘optimal’ anchorage systems which can withstanda given upward force at a minimum construction cost. Such systemshave many downward-pointing fibrous roots which are strengthenedprogressively towards the base. A study of the anchorage systemof 7- and 21-d-old wheat (Triticum aestivum L.) plants showedthat the plants possessed five seminal roots, of which onlythree pointed vertically. Each root was well suited for anchorage,being convered in root hairs and strengthened progressivelytowards the base by lignification of the stele. Strength andstiffiness of roots but not their mass per unit length increasedwith age. There was little interaction between roots when plantswere uprooted; the three vertical roots broke while the twohorizontal ones pulled out, as occurred when roots were pulledout singly, Uprooting forces increased with age and the rootsystem could withstand uprooting forces greater than those requiredto pull out upper leaves, so reducing the chances of the plantbeing uprooted by a herbivore, By 3 weeks a stiff adventitiousroot system, which would later help prevent the wheat lodging,was developing.  相似文献   

10.
Despite numerous studies of the effects of mechanical stimulationon plant shoots, the response of roots to mechanical stimulationhas largely been neglected. In this study the effects of shootflexure on the morphology and mechanics of two contrasting speciesof herbaceous angiosperm, growing in a glasshouse were compared:maize (Zea mays), a monocot; and sunflower (Helianthus annuusL.) a dicot. Mechanical stimulation affected the root more than the shootcomponents. Root systems of mechanicallystressed sunflowershad a greater angle of spread and increased root number. Aswell as large morphological and weight effects, with increasesover the control of 33% in the length of rigid root and 38%in the dry weight of lateral roots, in sunflowers, there werealso mechanical effects. In both species roots of flexed plantswere more rigid, stronger and composed of stiffer material andtheir root systems also provided greater anchorage strength.In contrast, there was only a small reduction in shoot weightand shoot height in flexed plants and no effects on mechanicalproperties. There were differences in behaviour between species; maize rootmorphology responded less than that of sunflowers to mechanicalstimulation. The basal diameter of roots increased by only 8%compared with 16% in sunflowers, though the roots of both speciesshowed similar increases in material stiffness. This differenceis related to the lack of secondary thickening in the monocotscompared with the dicot sunflowers. Key words: Thigmomorphogenesis, Helianthus annuus L., Zea mays, anchorage, lodging  相似文献   

11.
The structural development of the stems and basal anchorageroots of Galahad and Hereward winter wheat cultivars (Triticumaestivum L.) were investigated and related to their mechanicalfunction. Stem and root morphology, anatomy and mechanical propertieswere examined from tillering (March) up to maturity (August),together with plant weight distribution. This allowed us tocalculate a ‘factor of safety’ against root andstem failure throughout development. As the plants grew taller the stem and the anchorage ‘coronalroots’ increased in bending strength countering the increasingmechanical demands. The bending strength, in turn, was correlatedwith the amount of lignified material around the stem and rootperimeter. Structural development ceased by ear emergence, whenthe plant was at its tallest, but because the ear weight continuedto rise the ‘self-weight’ moment pushing the plantover continued to increase. This meant that the ‘safetyfactors’ of both cultivars against both root and stemmechanical failure decreased throughout development. In bothcultivars the safety factors against root failure were lowerthan for stem failure, and Galahad had lower factors of safetythan Hereward. All these findings were consistent with resultsof field trials; failure tends to occur late in development,during grain filling, and is localized to the root system, whilstGalahad is more prone to lodging than Hereward. The pattern of mechanical development of winter wheat seemsto be one which would maximize its reproductive success, maintainingits structural integrity especially early in development whileinvesting in a minimum of structural material. Key words: Safety factor, anchorage, lodging, biomechan-ics, structural development  相似文献   

12.
The anchorage mechanics of mature buttressed trees of Aglaiaand Nephelium, and of non-buttressed Mallotus wrayi have beeninvestigated by combining a study of the morphology of theirroot systems with a series of anchorage tests. Both types possessed tap roots, but only buttressed trees possessedsinker roots, which branched from the ends of the buttresses.The anchorage strength of the buttressed trees was almost double(10.6 kNm) that of the unbuttressed ones (4.9 kNm), and themaximum moment was generated at lower angles. In but tressedtrees, the leeward buttresses were pushed into the soil beforebending and eventually breaking towards their tip, whilst thewindward buttresses pulled out of the soil or delaminated ifthey possessed sinker roots. The tap root rotated in the soilto windward. In contrast, during failure of unbuttressed treesthe tap root both moved and bent towards the leeward, the windwardroots were pulled out of the soil, and the leeward lateralssimply buckled. Strains along but tresses were much higher thanalong the laterals of unbuttressed trees. These results suggest that buttresses act in both tension andcompression and make a much larger contribution to anchoragethan the thin laterals of non-buttressed trees. The relativecontribution of the but tresses was determined by carrying outa further series of anchorage tests in which both buttressedand unbuttressed trees were pulled over after all their lateralshad been cut away. These trees were therefore only anchoredby their taproot. Failure of both types was similar to intactunbuttressed trees, and they had similar anchorage strengthstoeach other, 4 kNm, around 80% of the value for intact non-buttressedtrees, but only 40% of the strength of intact buttressed trees.Buttresses therefore contribute around 60% of the anchorageof buttressed trees, producing around six times more anchoragethan the thin laterals of unbuttressed trees. Key words: Anchorage, root architecture, sinker roots, tap roots, root bending strength, buttresses  相似文献   

13.
The architecture of a tree root system may influence its abilityto withstand uprooting by wind loading. To determine how theroot branching pattern may alter the anchorage efficiency ofa tree, artificial model root systems with different topologiesand branching angles were built. The root systems were embeddedat various depths in wet sand and the pull-out resistance measured.A model to predict the uprooting resistance from the data collectedwas designed, allowing predictions of anchorage strength withregards to architecture. The dominant factors influencing pull-outresistance were the depth and length of roots in the soil. Themost efficient type of branching pattern predicted by the programwas one with an increased number of roots deep in the soil.The optimum branching angle most likely to resist pull-out isa vertical angle of 90° between a lateral and the main axis.The predicted mechanically optimal radial angle between a lateralbranch and its daughter is between 0 and 20°. Values ofbranching angle are compared with those measured in real woodyroot systems of European larch and Sitka spruce. Root architecture; root anchorage; pull-out resistance; windthrow; Picea sitchensis ; Larix decidua  相似文献   

14.
The anchorage systems of Himalayan balsam Impatiens glanduliferaand mature sunflowers Helianthus annuus were investigated bycombining morphological and anatomical study of the root systemswith mechanical tests on roots and with studies in which matureplants were pulled over. The root system of balsam is dominated by large numbers of fleshytapering adventitious roots which point downwards from theirorigin at the wide stem base. Sunflowers, in contrast, havea tapering tap-root from which 20–30 well-branched lateralsemerge, pointing radially outwards and downwards. Roots of eachspecies have contrasting anatomy: those of balsam resemble stems,having a central watery pith and being strengthened peripherallyby lignification of vascular tissue; roots of sunflowers arestrengthened by a solid woody stele. Roots of both species arerigid in tension and, towards the base, in bending. Both species exhibited similar behaviour to that known for treessuch as Sitka spruce; when pulled over they rotated about ahinge leeward of the stem base and a root-soil ball was pulledout of the surrounding soil. Anchorage was resolved into threecomponents which, in order of decreasing magnitude, were (i)the resistance to pulling of the roots on the windward sideof the plant (and, for sunflower, the tap-root); (ii) the resistanceof roots and soil at the leeward hinge to rotation; and (iii)the weight of the root-soil ball. Sunflower had stronger anchoragebut achieved it at a greater cost in terms of the dry mass ofits root system. In each species, the morphology, anatomy and mechanical propertiesof the root system can be related to those of the stem. Thewide stem base of balsam allows large numbers of mechanicallyefficient fleshy roots to be attached whereas in sunflowersa woody tap-root system is necessary to anchor the much narrowerstem. Key words: Impatiens, Helianthus, roots, anchorage  相似文献   

15.
Previous work has shown that as the density of wheat plants increase, the spread of the root plate, root length and root number per plant decrease, leading to reduced anchorage strength and increased lodging susceptibility. The aim of this study was to determine which aspect of mutual plant shading [reduction of photosynthetically active radiation (PAR) or the ratio of red to far red light (R : FR)] is associated with this reduction in anchorage strength. Field experiments were conducted at Sutton Bonington, Leicestershire, UK, in two seasons using a range of plant densities in conjunction with shading materials to manipulate PAR and R : FR independently. The spread of the root plate, which has been linked most strongly with anchorage strength, was almost exclusively influenced by PAR intercepted per plant at the beginning of stem extension. Root number and root length were influenced by both PAR and R : FR. When structural roots (defined as thicker than 0.5 mm) and nonstructural roots were considered separately, it was discovered that increasing plant density and PAR shading reduced the length of both structural and nonstructural roots. However, reducing R : FR only reduced the length of structural roots without affecting the length of nonstructural roots.  相似文献   

16.
The anchorage of deep rooted 16-year-old larch trees, Larixeuropea japonica, has been studied by combining winching testswith analyses of strain around the base of the trunk and rootsystem and mechanical tests on individual roots. These showedthat anchorage is provided by the laterals which emerge fromaround the stem base, sinker roots which emerge along theirlength, and tap roots positioned directly underneath the bole.During anchorage failure the leeward laterals are bent and eventuallybreak close to their base, whilst the windward laterals arepulled out of the ground, with their sinker roots intact. Afterinitially being confined by the soil and bending, the tap rootrotates in the soil. Anchorage failure is similar when the soilis dry as when it is wet, but failure occurs closer to the trunk.Strain measurements along the lateral roots revealed that thestresses were highest close to the trunk and that these regionsof the roots contribute most to tree stability. The two major components of anchorage were found to be the resistanceof leeward laterals to bending and the resistance of tap rootsand windward sinkers to uprooting. Bending tests on leewardlaterals revealed that they provide around 25% of tree anchorage.Almost 75% of the anchorage strength must, therefore, be providedby the windward sinkers and tap roots. Anchorage strength ofroots was positively correlated to their cross-sectional area.The vertical orientation of the sinkers makes the anchoragesystem of larch more efficient than the plate system formedby Sitka spruce on waterlogged soils and means that no root-soilplate is formed. Key words: Anchorage, root architecture, sinker roots, root bending strength, windthrow  相似文献   

17.
The Anchorage of Leek Seedlings: The Effect of Root Length and Soil Strength   总被引:15,自引:1,他引:14  
ENNOS  A. ROLAND 《Annals of botany》1990,65(4):409-416
The mechanical behaviour of single roots being extracted fromsoil was modelled as a process in which tension is transferredfrom the upper regions of the root to the soil via shear. Quantitativepredictions were made about the extraction forces and the shapeof the uprooting curves, and these were tested using leek radiclesof different lengths in soil of two different strengths. Results of uprooting tests were qualitatively similar to thepredictions. The pullout resistance rose with root length, untilthe breaking strength of the root was reached, at around 30mm: longer roots all broke before the tip was stressed. In wholeroot systems, therefore, failure will occur proximally beforethe line distal roots are mechanically stressed, so these canhave no anchorage function. Resistance to an upward force will be most economically achievedby having many strengthened proximal root axes, as in the adventitiousroot systems of grasses, sedges and stoloniferous dicots. Allium porrum, root, anchorage, shear, tension, soil  相似文献   

18.
The effect of wind sway on the mechanical characteristics ofthe anchorage roots and the stem was investigated in maturewinter wheat (Triticum aestivumL., cv. Hereward). Wheat plantswere field-grown, either supported by a frame, which preventedwind sway, or unsupported (free-standing) and the morphologyand mechanical properties of the stems and the anchorage, ‘coronal’, roots were measured. Wind sway had little influence on either the stem height orear weight of the plants but did affect the mechanical propertiesof the stem. Stems of supported plants were weaker and moreflexible than the stems of free-standing plants. There werealso differences in the anchorage systems between the treatments:supported plants had just under half as many ‘coronal’ anchorage roots as the free-standing plants. This reducedthe anchorage strength of supported plants by a third. These differences in mechanical structure meant that the free-standingplants were more resistant to stem buckling and more resistantto anchorage failure. However, considering the difference inthe need for mechanical strength in plants from the two regimes,these differences were small. This suggests that wheat has inherentmechanical integrity and, as a monocotyledon with no secondarythickening, it differs little structurally between environments. Triticum aestivumL.; thigmomorphogenesis; anchorage; safety factor; mechanical stimulation  相似文献   

19.
The finite element (FE) method has been used in recent years to simulate overturning processes in trees and to better comprehend plant anchorage mechanics. We aimed at understanding the fundamental mechanisms of root-soil reinforcement by simulating direct shear of rooted and non-rooted soil. Two- (2D) and three-dimensional (3D) FE simulations of direct shear box tests were carried out using readily available software for routine strength assessment of the root-soil composite. Both rooted and non-rooted blocks of soil were modelled using a simplified model of root distribution and root material properties representative of real roots. Linear elastic behaviour was assumed for roots and the soil was modelled as an ideally plastic medium. FE analysis showed that direct shear tests were dependent on the material properties specified for both the soil and roots. 2D and 3D simulations of direct shear of non-rooted soil produced similar results and any differences between 2D and 3D simulations could be explained with regard to the spatial complexity of roots used in the root distribution model. The application of FE methods was verified through direct shear tests on soil with analogue roots and the results compared to in situ tests on rooted soil in field conditions.  相似文献   

20.
Root systems have a pivotal role in plant anchorage and their mechanical interactions with the soil may contribute to soil reinforcement and stabilization of slide-prone slopes. In order to understand the responses of root system to mechanical stress induced by slope, samples of Spartium junceum L., growing in slope and in plane natural conditions, were compared in their morphology, biomechanical properties and anatomical features. Soils sampled in slope and plane revealed similar characteristics, with the exception of organic matter content and penetrometer resistance, both higher in slope. Slope significantly influenced root morphology and in particular the distribution of lateral roots along the soil depth. Indeed, first-order lateral roots of plants growing on slope condition showed an asymmetric distribution between up- and down-slope. Contrarily, this asymmetric distribution was not observed in plants growing in plane. The tensile strength was higher in lateral roots growing up-slope and in plane conditions than in those growing down-slope. Anatomical investigations revealed that, while roots grown up-slope had higher area covered by xylem fibers, the ratio of xylem and phloem fibers to root diameter did not differ among the three conditions, as also, no differences were found for xylem fiber cell wall thickness. Roots growing up-slope were the main contributors to anchorage properties, which included higher strength and higher number of fibers in the xylematic tissues. Results suggested that a combination of root-specific morphological, anatomical and biomechanical traits, determines anchorage functions in slope conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号