首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ribosomal RNA synthesis was selectively inhibited in HeLa cells by lucanthone, a clinically useful schistosomicide which shares many of the properties of Actinomycin D. Synthesis of DNA-like RNA continued during complete inhibition of ribosomal RNA synthesis. Under these conditions newly synthesized DNA-like RNA accumulated normally in polyribosomes of the cell cytoplasm; most of it appeared to be messenger RNA. DNA synthesis was partially inhibited by lucanthone but protein synthesis was undisturbed. Synthesis of ribosomal RNA promptly resumed after removal of lucanthone and cell survival was not affected if exposures to the drug were limited to two hours.  相似文献   

2.
3.
At least 10 distinct early virus-induced polypeptides were synthesized within 0 to 6 h after infection of permissive cells with cytomegalovirus. These virus-induced polypeptides were synthesized before and independently of viral DNA replication. A majority of these early virus-induced polypeptides were also synthesized in nonpermissive cells, which do not permit viral DNA replication. The virus-induced polypeptides synthesized before viral DNA replication were hypothesized to be nonstructural proteins coded for by the cytomegalovirus genome. Their synthesis was found to be a sequential process, since three proteins preceded the synthesis of the others. Synthesis of all early cytomegalovirus-induced proteins was a transient process; the proteins reached their highest molar ratios before the onset of viral DNA replication. Late viral proteins were synthesized at the time of the onset of viral DNA replication, which was approximately 15 h after infection. Their synthesis was continuous and increased in molar ratios with the accumulation of newly synthesized viral DNA in the cells. The presence of the amino acid analog canavanine or azetadine during the early stage of infection suppressed viral DNA replication. The amount of viral DNA synthesis was directly correlated to the relative amount of late viral protein synthesis. Because synthesis of late viral proteins depended upon viral DNA replication, the proteins were not detected in permissive cells treated with an inhibitor of viral DNA synthesis or in nonpermissive cells that are restrictive for cytomegalovirus DNA replication.  相似文献   

4.
Interferometric and photometric measurements have been made on HeLa cells, a strain of cells originally derived from a human carcinoma. From a study of the relations between successive physical measurements on individual cells, it was confirmed that, whereas the net syntheses of nuclear RNA and nuclear protein are closely associated during interphase, they are dissociated from DNA replication to a significant extent. These results on nuclear metabolism agree with others previously reported in cell strains derived from tumors; they contrast with results from freshly prepared normal cells, where the net syntheses of DNA, nuclear RNA, and protein are closely associated during interphase. Cytoplasmic measurements on HeLa cells showed that much of the net synthesis of cytoplasmic RNA is associated with DNA replication as in normal cells, and they failed to detect transfer from the nucleus of a stable RNA component synthesized independently from DNA replication. In auxiliary experiments, an inhibition of the onset of DNA synthesis was produced by a dose of X-rays; under these conditions it was shown that the major part of the accumulation of nuclear protein was independent of DNA replication and that the accumulation of nuclear RNA was equivalent to or slightly less than that of nuclear protein. About half the accumulation of cytoplasmic RNA was inhibited when DNA synthesis was blocked.  相似文献   

5.
6.
The effectiveness of the inhibitor, canavanine, was evaluated by examining its action in Canavalia ensiformis and Glycine max. Isolated roots were grown in culture tubes containing White's medium plus canavanine or arginine. A differential effect of canavanine on the incorporation of precursors of DNA, RNA, and protein was found, which is assumed to be related to the ability of the plant to utilize canavanine in reactions typically involving arginine. Canavanine was not found to affect DNA, RNA, or protein synthesis in Canavalia ensiformis, a plant in which this amino acid is synthesized naturally. In the canavanine sensitive species, Glycine max, of the same subfamily Papilionoideae, canavanine was observed to inhibit strongly DNA, RNA, and protein synthesis. A primary inhibition of the RNA synthesizing system is suggested. The data indicate the canavanine inhibitions are more complex than a simple competition with arginine in protein synthesis.  相似文献   

7.
8.
9.
10.
11.
R Gantt 《Mutation research》1987,183(1):75-87
Bulky adducts to DNA including DNA-protein crosslinks formed with trans-platinum(II)diammine-dichloride are repaired largely by the nucleotide excision pathway in mammalian cells. The discovery in this laboratory that cells deficient in nucleotide excision repair, i.e., SV40-virus transformed SV-XP20S cells, can efficiently repair DNA-protein crosslinks implicates a second pathway. In this report, details concerning this pathway are presented. DNA-protein crosslinks induced with 20 microM trans-platinum were assayed by the membrane alkaline elution procedure of Kohn. DNA replication was measured by CsCl gradient separation of newly synthesized DNA that had incorporated 5-bromodeoxyuridine. The following results indicate that this new repair pathway is associated with cell cycling: Whereas rapidly proliferating human cells deficient in excision repair (SV40 transformed XP20S, group A) are proficient in repair of DNA-protein crosslinks, the more slowly growing untransformed parent line is deficient but can complete repair after prolonged periods of 4-6 days, the approximate doubling time of the cell population. Either "used" culture medium or cycloheximide (1 microgram/ml) inhibits cell proliferation, protein synthesis, DNA replication and crosslink repair. In the presence of increasing concentrations of cycloheximide (0.01-5 micrograms/ml) the percent of DNA replication decreases and is essentially equivalent to the percent of crosslink repair. The following results indicate that this new repair pathway, though associated with cell cycling, is independent of DNA replication per se. The rates of DNA-protein crosslink repair and DNA replication are essentially the same in mouse L1210 cells rapidly proliferating in 20% serum supplement; however, to slower proliferation rates in 1% serum rate of crosslink repair is slower but differs from that of DNA replication. In the presence of aphidicolin (10 micrograms/ml) cells can repair DNA-protein crosslinks in virtually the complete absence of DNA replication, though the rate is slower in both nucleotide excision-proficient and -deficient cells. Thus, DNA replication is not essential for repair of DNA-protein crosslinks. Comparison of the kinetics of replication and DNA-protein crosslink repair of pulse-labeled indicates that, in the absence of metabolic inhibitors, repair of the crosslinks is independent of replication per se and, therefore, DNA recombination events are not involved in this repair process. We conclude, therefore, that the new repair pathway is not coupled with DNA replication but is with cell cycling.  相似文献   

12.
W M Bonner  R S Wu  H T Panusz  C Muneses 《Biochemistry》1988,27(17):6542-6550
Procedures are presented which permit the identification and analysis of cellular histone that is not bound to chromatin. This histone, called soluble histone, could be distinguished from that bound to chromatin by the state of H4 modification and the lack of H2A ubiquitination. Changes in the levels of newly synthesized soluble histone were analyzed with respect to the balance between histone and DNA synthesis in hamster ovary cells. Pulse-chase protocols suggested that the chase of newly synthesized histone from the soluble fraction into chromatin may have two kinetic components with half-depletion times of about 1 and 40 min. When protein synthesis was inhibited, the pulse-chase kinetics of newly synthesized histone from the solubl fraction into chromatin were not significantly altered from those of the control. However, in contrast to the control, when protein synthesis was inhibited, DNA synthesis was also inhibited with kinetics similar to those of the chase of newly synthesized histone from the soluble fraction. There was a rapid decrease in the rate of DNA synthesis with a half-deceleration time of 1 min down to about 30% of the control rate, followed by a slower decrease with an approximate half-deceleration time of 40 min. When DNA synthesis was inhibited, newly synthesized histone accumulated in the soluble fraction, but H2A and H2B continued to complex with chromatin at a significant rate. Soluble histone in G1 cells showed the same differential partitioning of H4/H3 and H2A/H2B between the soluble and chromatin-bound fractions as was found in cycling cells with inhibited DNA synthesis. These results support a unified model of reciprocal regulatory mechanisms between histone and DNA synthesis in the assembly of chromatin.  相似文献   

13.
14.
P Ward  K I Berns 《Journal of virology》1996,70(7):4495-4501
Previously we have described an in vitro assay for the replication of adeno-associated virus type 2 (AAV2) DNA. Addition of the AAV2 nonstructural protein Rep68 to an extract from uninfected cells supports the replication of linear duplex AAV DNA. In this report, we examine replication of linear duplex AAV DNA in extracts from either uninfected or adenovirus (Ad)-infected HeLa cells. The incorporation of radiolabeled nucleotides into full-length linear AAV DNA is 50-fold greater in extracts from Ad-infected cells than in extracts from uninfected cells. In addition, the majority of the labeled full-length AAV DNA molecules synthesized in the Ad-infected extract have two newly replicated strands, whereas the majority of labeled full-length AAV DNA molecules synthesized in the uninfected extract have only one newly replicated strand. The numbers of replication initiations on original templates in the two assays are approximately the same; however, replication in the case of the Ad-infected cell extract is much more likely to result in the synthesis of a full-length AAV DNA molecule. Most of the newly replicated molecules in the assay using uninfected cell extracts are in the form of stem-loop structures. We hypothesize that Ad infection provides a helper function related to elongation during replication by a single-strand displacement mechanism. In the assay using the uninfected HeLa cell extract, replication frequently stalls before reaching the end of the genome, causing the newly synthesized strand to be displaced from the template, with a consequent folding on itself and replication back through the inverted terminal repeat, using itself as a template. In support of this conjecture, replication in the uninfected cell extract of shorter substrate molecules is more efficient, as measured by incorporation of radiolabeled nucleotides into full-length substrate DNA. In addition, when shorter substrate molecules are used as the template in the uninfected HeLa cell assay, a greater proportion of the labeled full-length substrate molecules contain two newly replicated strands. Shorter substrate molecules have no replicative advantage over full-length substrate molecules in the assay using an extract from Ad-infected cells.  相似文献   

15.
16.
17.
Under normal growth conditions, all of the newly synthesized polyoma deoxyribonucleic acid (py DNA) that could be extracted from infected mouse cell cultures by the Triton procedure of Green, Miller, and Hendler was in the form of a 55S nucleoprotein complex. Inhibition of protein synthesis by cycloheximide reduced the sedimentation rate of the polyoma complex synthesized during the first hour after addition of the drug to 25 to 35S. Since the 55S and the 25 to 35S complexes each contain closed circular 20S py DNA, it is suggested that the slower complex contains less protein per DNA molecule and that there is normally a small or unstable pool of protein available for binding to newly replicated py DNA. In the presence of cycloheximide, the newly formed 25 to 35S complex was not derived from preexisting 55S complex. Thus, some py DNA which was not solubilized by the Triton method served as a template for replication. Further evidence for the existence of polyoma replication sites is provided by the demonstration that, during the inhibition of protein synthesis, a class of newly replicated py DNA can be solubilized by the sodium dodecyl sulfate procedure of Hirt, but not by the Triton method. It is postulated that continuous protein synthesis is required to release py DNA from replication sites in the form of a Triton-extractable nucleoprotein complex.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号