首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have been studying the mechanisms involved in the oxidative modification of low density lipoprotein (LDL) that lead to its transformation to a cytotoxic complex. Here we examine the direct effect-of soybean lipoxygenase (SLO), a 15-lipoxygenase, on normal human LDL. SLO oxidized LDL and rendered it cytotoxic; agents known to interfere with lipoxygenase activity inhibited this reaction. Enhancement of both the SLO-mediated LDL oxidation and the conversion of LDL to a cytotoxin was observed when either superoxide dismutase or copper (II) (3,5,-diisopropylsalicylic acid)2, both of which dismute superoxide anion, were included during the incubation of SLO with LDL. In contrast, catalase inhibited this reaction in the presence or absence of agents that dismute superoxide anion. Thus, purified lipoxygenase can mediate LDL modification and superoxide anion inhibits this reaction, Furthermore, H2O2 is essential for SLO-mediated LDL oxidation and conversion of LDL to a cytotoxin.  相似文献   

2.
Mitochondrial potassium channels are important mediators of cell protection against stress. The mitochondrial large-conductance "big" K(+) channel (mBK) mediates the evolutionarily-conserved process of anesthetic preconditioning (APC), wherein exposure to volatile anesthetics initiates protection against ischemic injury. Despite the role of the mBK in cardioprotection, the molecular identity of the channel remains unknown. We investigated the attributes of the mBK using C. elegans and mouse genetic models coupled with measurements of mitochondrial K(+) transport and APC. The canonical Ca(2+)-activated BK (or "maxi-K") channel SLO1 was dispensable for both mitochondrial K(+) transport and APC in both organisms. Instead, we found that the related but physiologically-distinct K(+) channel SLO2 was required, and that SLO2-dependent mitochondrial K(+) transport was triggered directly by volatile anesthetics. In addition, a SLO2 channel activator mimicked the protective effects of volatile anesthetics. These findings suggest that SLO2 contributes to protection from hypoxic injury by increasing the permeability of the mitochondrial inner membrane to K(+).  相似文献   

3.
The effect of the bacterial cytolytic toxin, streptolysin O (SLO), on rabbit erythrocyte membranes, liposomes, and lipid dispersions was examined. SLO produced no gross alterations in the major erythrocyte membrane proteins or lipids. However, when erythrocytes were treated with SLO and examined by electron microscopy, rings and "C"-shaped structures were observed in the cell membrane. The rings had an electron-dense center, 24 nm in diameter, and the overall diameter of the structure was 38 nm. Ring formation also occurred when erythrocyte membranes were fixed with glutaraldehyde and OsO4 before the addition of toxin. In contrast, rings were not seen when erythrocytes were treated with toxin at 0 degrees C, indicating that adsorption of SLO to the membrane is not sufficient for ring formation since toxin is known to bind to erythrocytes at that temperature. The ring structures were present on lecithin-cholesterol-dicetylphosphate liposomes after SLO treatment, but there was no release of the trapped, internal markers, K2CrO4 or glucose. The crucial role of cholesterol in the formation of rings and C's was demonstrated by the fact that these structures were present in toxin-treated cholesterol dispersions, but not in lecithin-dicetylphosphate dispersions nor in the SLO preparations alone. The importance of cholesterol was also shown by the finding that no rings were present in membranes or cholesterol dispersions which had been treated with digitonin before SLO was added. Although rings do not appear to be "holes" in the membrane, a model is proposed which suggests that cholesterol molecules are sequestered during ring and C-structure formation, and that this process plays a role in SLO-induced hemolysis.  相似文献   

4.
Streptolysin O (SLO) is a membrane-damaging toxin produced by most strains of group A beta-hemolytic streptococci. We performed ultrastructural analysis of SLO-derived lesions on erythrocyte membranes by examining electron micrographs of negatively stained preparations. SLO formed numerous arc- and ring-shaped structures with or without holes on membranes. Rings formed on intact cell membranes had an inner diameter of ca. 24 nm and had distinct borders of ca. 4.9 nm in width, but the diameter of rings varied from 24 to 30 nm on membranes of erythrocyte ghosts. Image analysis of electron micrographs demonstrated that each ring was composed of an inner and an outer layer. Each layer contained an array of 22 to 24 SLO molecules. On the top of the ring, we found a characteristic crown that projected from the cell membrane. The crown was separated by an electron-dense layer from the basal part of the ring that was embedded in the lipid bilayer of the erythrocyte membrane. Heights of the three parts, namely, the crown (head), the space (neck), and the basal portion (base), were ca. 3.2, 1.6, and 5.0 nm, respectively, and we postulated that these parts are the constituents of a single SLO molecule. The volumes of SLO molecules in the inner and outer layers were calculated to be 77 and 88 nm3. On the basis of a model of the structure of SLO, we propose some new details of the mechanisms of hemolysis by SLO toxin.  相似文献   

5.
We have surveyed the sensitivity of cells in macrophage lineage to Streptolysin-O (SLO). SLO had cytotoxic activity on immature myeloid cell lines such as M1 and WEHI-3BD+. SLO was toxic to the cells after a 2-hr incubation. However, mature macrophage cell lines such as A640-BB-2, J774, and P388D1 were not sensitive to the same dose of SLO. After M1 cells were treated with leukemia inhibitory factor (LIF), a differentiation-inducer to macrophage, these cells became insensitive to SLO in one day. This cytotoxic action of SLO was inhibited by pretreatment with anti-Streptolysin-O antibody or cholesterol. These results indicate that SLO has different effects on macrophage lineage.  相似文献   

6.
Abstract Vibrio vulnificus hemolysin (VVH) and streptolysin O (SLO) are both cholesterol-binding hemolysins. Both hemolysins were inactivated with H2O2, but the lost activity of SLO was restored by addition of thiol compounds, whereas that of VVH was not. Moreover, the activity of VVH was lowered by thiol compounds but not by thiolblocking agents, whereas the latter produced a decrease in SLO activity. These results suggest that VVH is not a thiol-activated hemolysin, in spite of its cholesterol-binding property.  相似文献   

7.
Streptolysin O (SLO) is a cholesterol-dependent cytolysin produced by the important human pathogen, group A Streptococcus (Streptococcus pyogenes or GAS). In addition to its cytolytic activity, SLO mediates the translocation of GAS NAD-glycohydrolase (NADase) into human epithelial cells in vitro. Production of both NADase and SLO is associated with augmented host cell injury beyond that produced by SLO alone, but the mechanism of enhanced cytotoxicity is not known. We have now shown that expression of NADase together with SLO dramatically enhanced the lytic activity of GAS culture supernatants for erythrocytes but had no effect on SLO-mediated poration of synthetic cholesterol-rich liposomes. This result revealed a previously unknown contribution of NADase to the cytolytic activity associated with GAS production of SLO. Purified recombinant SLO bound NADase in vitro, supporting a specific, physical interaction of the two proteins. Exposure of human keratinocytes to wild-type GAS, but not to a NADase-deficient mutant strain, resulted in profound depletion of cellular NAD+ and ATP. Furthermore, expression of recombinant GAS NADase in yeast, in the absence of SLO, induced growth arrest, depletion of NAD+ and ATP, and cell death. These findings have provided evidence that the augmentation of SLO-mediated cytotoxicity by NADase is a consequence of depletion of host cell energy stores through the enzymatic action of NADase. Together, the results have provided mechanistic insight into the cytotoxic effects of a unique bipartite bacterial toxin.  相似文献   

8.
Cytochrome oxidase preparations have weak but not negligible superoxide dismutase activity which is inhibited by cyanide and azide as well as alkaline and thermal treatments. The activity does not depend on lipid content of cytochrome oxidase preparations. The activity, probably, cannot be explained by extraneous copper.  相似文献   

9.
Hypoxia-reoxygenation (H-R) is associated with alterations in oxidant-antioxidant balance and L-arginine-nitric oxide system. Tocopherols decrease the activity of reactive oxygen species (ROS) and yet are not beneficial in clinical trials. It has been proposed that mixed tocopherols as found in nature may be more tissue protective than alpha-tocopherol alone found in commercial preparations. We compared the effect of a mixed tocopherol preparation with that of alpha-tocopherol alone on superoxide dismutase (SOD) activity and iNOS expression in cultured myocytes exposed to H-R. Myocytes from Sprague-Dawley rat hearts were subjected to hypoxia for 24 h followed by reoxygenation for 3 h H-R. Parallel groups of myocytes were pretreated with alpha-tocopherol alone or a mixed-tocopherol preparation (containing alpha-, gamma-, and delta-tocopherols) (50 microM) for 30 min. H-R resulted in myocyte injury (determined by LDH release), a decrease in SOD activity and an upregulation of iNOS expression/activity. Both tocopherol preparations attenuated cell injury and markedly decreased the effects of H-R on SOD activity and iNOS expression/activity (all P < 0.05 vs H-R group, n = 5). However, mixed-tocopherol preparation was much superior to alpha-tocopherol in terms of myocyte protection from the adverse effect of H-R (P < 0.05). Lack of efficacy of commercial tocopherol preparations in clinical trials may reflect absence of gamma- and delta-tocopherols.  相似文献   

10.
The contribution of streptolysin O (SLO) from Streptococcus pyogenes to neutrophil infiltration in inflammatory lesions was determined by production of cytokine-induced neutrophil chemoattractant (CINC)-1, -2 and -3, and macrophage inflammatory protein (MIP)-1alpha by rat macrophages stimulated with SLO in culture. Active SLO induced the production of CINCs and MIP-1alpha in dose- and time-dependent manners. These inductions were ascertained by chemokine mRNA expression in macrophages. Streptolysin S was without effect. The SLO-cholesterol complex induced the chemokine production in proportion to the residual hemolytic activity of the complex. In addition, the effects of SLO on the chemokine production were confirmed by the injection of active SLO into the preformed air pouch on the back of rats. The infiltration of neutrophils into the pouch fluid (exudate) increased steadily with a lag phase of about 2 hr. The major chemokine found in exudates was MIP-1alpha but not CINCs. In this study, it became clear that active SLO, but not the inactive one, contributed to the production of MIP-1alpha and CINCs in the conditioned medium and in exudates.  相似文献   

11.
Membrane cholesterol is essential to the activity of at least two structurally unrelated families of bacterial pore-forming toxins, represented by streptolysin O (SLO) and Vibrio cholerae cytolysin (VCC), respectively. Here, we report that SLO and VCC differ sharply in their interaction with liposome membranes containing enantiomeric cholesterol (ent-cholesterol). VCC had very low activity with ent-cholesterol, which is in line with a stereospecific mode of interaction of this toxin with cholesterol. In contrast, SLO was only slightly less active with ent-cholesterol than with cholesterol, suggesting a rather limited degree of structural specificity in the toxin-cholesterol interaction.  相似文献   

12.
Streptolysin O (SLO) is a membrane-damaging toxic protein produced by group A streptococci. We performed an ultrastructural analysis of pore formation and the mechanism of hemolysis by SLO, using a mutant form of SLO [SLO(C/A)-SS] and native SLO. SLO(C/A)-SS was unable to penetrate the erythrocyte membrane as a consequence of immobilization that was due to a disulfide bond between domains. The SLO(C/A)-SS molecules that bound to membranes formed numerous single-layered ring-shaped structures that did not result in pores on the membranes. These structures were similar to the structures formed by native SLO at 0 degrees C. After treatment with dithiothreitol, SLO(C/A)-SS that had bound to membranes formed double-layered rings with pores on the membranes, as does native SLO at room temperature. Our morphological evidence demonstrates that an increase in temperature is necessary for the occurrence of conformational changes and for the formation of double-layered rings after the insertion of domain 3 into the host cell membrane. On the basis of a model of the oligomeric structure of SLO, we propose some new details of the mechanism of hemolysis by SLO.  相似文献   

13.
We present transmission electron microscopical data from negatively stained specimens of cholesterol following interaction with the thiol-activated bacterial toxin streptolysin O (SLO) (wild-type and a number of cysteine substitution mutants), with and without chemical modification of the cysteine residues. Two experimental systems were used, one with an aqueous suspension of cholesterol microcrystals and the other with immobilized thin planar cholesterol crystals attached to a carbon film. In both systems the wild-type SLO and two cytolytically active mutants, Cys 530 → Ala (C530A) and Ser 101 → Cys (S101C), readily generated the characteristic SLO arc- and ring-like oligomers on the surface of cholesterol microcrystals and immobilized planar cholesterol crystals. An underlying array of bound toxin can sometimes be detected. In the presence of high concentrations of SLO monomer, extensive sheet-like networks of linked oligomers extend from the microcrystals. The SLO mutant Thr250 → Cys (T250C), which also possesses a relatively high cytolytic activity, has been found to create ring-like toxin oligomers somewhat more slowly than wild-type SLO, but the linear monomolecular layer array of cholesterol-bound toxin is more readily detected. With mutant Asn402 → Cys (N402C), which has ≈10% cytolytic activity compared to wild-type SLO, the formation of ring-like oligomers is markedly reduced, with incomplete arcs and the parallel arrays predominating. Chemical modification of the functional cysteine groups of SLO mutants T250C and N402C completely inhibits the formation of toxin oligomers, but does not prevent the ability of these mutants to bind to cholesterol as a linear array. Such chemical modification is also known to abolish hemolysis/cytolysis. For both mutant T250C and N402C the parallel array of bound SLO adopts an orientation that appears to be determined by the underlying lattice of the crystalline cholesterol. The cholesterol-binding of biotinylated SLO mutant N402C was confirmed by labeling in suspension with 5-nm streptavidin-conjugated colloidal gold particles. Removal of the maltose-binding protein from the SLO fusion products increases the order of the monolayer array of biotinylated SLO bound to cholesterol crystals. Overall, our data support the concept that there is sterospecific binding of the SLO monomer to crystalline cholesterol bilayers, prior to oligomer formation. With the mutants tested, cysteine modification does not prevent binding to cholesterol, but subsequent release and oligomer formation are blocked.  相似文献   

14.
Since hydroperoxide specificity of lipoxygenase (LO) is poorly understood at present, we investigated the ability of cumene hydroperoxide (CHP) and tert-butyl hydroperoxide (TBHP) to support cooxidase activity of the enzyme toward the selected xenobiotics. Considering the fact that in the past, studies of xenobiotic N-demethylation have focused on heme-proteins such as P450 and peroxidases, in this study, we investigated the ability of non-heme iron proteins, namely soybean LO (SLO) and human term placental LO (HTPLO) to mediate N-demethylation of phenothiazines. In addition to being dependent on peroxide concentration, the reaction was dependent on enzyme concentration, substrate concentration, incubation time, and pH of the medium. Using Nash reagent to estimate formaldehyde production, the specific activity under optimal assay conditions for the SLO mediated N-demethylation of chlorpromazine (CPZ), a prototypic phenothiazine, in the presence of TBHP, was determined to be 117+/-12 nmol HCHO/min/mg protein, while that of HTPLO was 3.9+/-0.40 nmol HCHO/min/mg protein. Similar experiments in the presence of CHP yielded specific activities of 106+/-11 nmol HCHO/min/mg SLO, and 3.2+/-0.35 nmol HCHO/min/mg HTPLO. As expected, nordihydroguaiaretic acid and gossypol, the classical inhibitors of LOs, as well as antioxidants and free radical reducing agents, caused a marked reduction in the rate of formaldehyde production from CPZ by SLO in the reaction media fortified with either CHP or TBHP. Besides chlorpromazine, both SLO and HTPLO also mediated the N-demethylation of other phenothiazines in the presence of these organic hydroperoxides.  相似文献   

15.
Cytolysin‐mediated translocation (CMT), performed by Streptococcus pyogenes, utilizes the cholesterol‐dependent cytolysin Streptolysin O (SLO) to translocate the NAD+‐glycohydrolase (SPN) into the host cell during infection. SLO is required for CMT and can accomplish this activity without pore formation, but the details of SLO's interaction with the membrane preceding SPN translocation are unknown. Analysis of binding domain mutants of SLO and binding domain swaps between SLO and homologous cholesterol‐dependent cytolysins revealed that membrane binding by SLO is necessary but not sufficient for CMT, demonstrating a specific requirement for SLO in this process. Despite being the only known receptor for SLO, this membrane interaction does not require cholesterol. Depletion of cholesterol from host membranes and mutation of SLO's cholesterol recognition motif abolished pore formation but did not inhibit membrane binding or CMT. Surprisingly, SLO requires the coexpression and membrane localization of SPN to achieve cholesterol‐insensitive membrane binding; in the absence of SPN, SLO's binding is characteristically cholesterol‐dependent. SPN's membrane localization also requires SLO, suggesting a co‐dependent, cholesterol‐insensitive mechanism of membrane binding occurs, resulting in SPN translocation.  相似文献   

16.
We investigated the effects of mild oxidation on protein kinase C (PKC) using the xanthine/xanthine oxidase system of generating superoxide. Exposure of various PKC preparations to superoxide stimulated the autonomous activity of PKC. Similarly, thiol oxidation increased autonomous PKC activity, consistent with the notion that superoxide stimulates PKC via thiol oxidation. The superoxide-induced stimulation of PKC activity was partially reversed by reducing agents, suggesting that disulfide bond formation contributed to the oxidative stimulation of PKC. In addition, superoxide increased the autonomous activity of the alpha, beta(II), epsilon, and zeta PKC isoforms, all of which contain at least one cysteine-rich region. Taken together, our observations suggested that superoxide interacts with PKC at the cysteine-rich region, zinc finger motif of the enzyme. Therefore, we examined the effects of superoxide on this region by testing the hypothesis that superoxide stimulates PKC by promoting the release of zinc from PKC. We found that a zinc chelator stimulated the autonomous activity of PKC and that superoxide induced zinc release from an PKC-enriched enzyme preparation. In addition, oxidized PKC contained significantly less zinc than reduced PKC. Finally, we have isolated a persistent, autonomously active PKC by DEAE-cellulose column chromatography from hippocampal slices incubated with superoxide. Taken together, these data suggest that superoxide stimulates autonomous PKC activity via thiol oxidation and release of zinc from cysteine-rich region of PKC.  相似文献   

17.
A group of 4-allyl-2-methoxyphenol (eugenol) esters were designed, synthesized, and evaluated as potential inhibitors of soybean 15-lipoxygenase (SLO). Compounds 4c, 4d 4f, 4p, and 4q showed the best IC(50) in SLO inhibition (IC(50)=1.7, 2.3, 2.1, 2.2, and 0.017microM, respectively). All compounds were docked into SLO active site and showed that allyl group of compounds is oriented toward the iron atom in the active site of SLO. It is assumed that lipophilic interaction of ligand-enzyme would be in charge of inhibiting the enzyme activity. The selectivity of eugenol derivatives in inhibiting 15-HLOb was also compared with 15-HLOa by molecular modeling and multiple alignment techniques.  相似文献   

18.
Indoleamine 2,3-dioxygenase purified to apparent homogeneity from rabbit intestine was inhibited by scavengers for superoxide anion such as superoxide dismutase and 1,2-dihydroxybenzene-3,5-disulfonic acid (Tiron). On the other hand, beta-carotene and 1,4-diazobicyclo-(2,2,2)-octane, scavengers for singlet oxygen, did not affect the enzyme activity significantly. The degree of inhibition of the dioxygenase by superoxide dismutase preparations from bovine erythrocytes, green peas, spinach leaves, and Escherichia coli paralleled that observed with these dismutase preparations on the aerobic reduction of cytochrome c by xanthine oxidase and its substrate. The pH profiles of the inhibition by dismutase of the dioxygenase and cytochrome c reduction were also similar and the maximal inhibition was observed around pH 10 in both cases. The degree of inhibition was not affected by the concentration of substrate but was a function of the concentration of dismutase. It was inversely related to the concentrations of the dioxygenase and its cofactors, ascorbic acid and methylene blue, both of which were required for maximum activity. Ascorbic acid could be replaced either by xanthine oxidase and its substrate, or by tetrabutylammonium superoxide prepared by electrolytic reduction of molecular oxygen, or by potassium superoxide. When limited amounts of superoxide anion were added to the reaction mixture containing a substrate amount of the dioxygenase, the ratio of the amount of superoxide anion added to that of the product formed was approximately unity both under aerobic and anaerobic conditions. Taken together, these findings indicate that superoxide anion, rather than molecular oxygen, is utilized as substrate by indoleamine 2,3-dioxygenase.  相似文献   

19.
W.P. Michalski  Z. Kaniuga   《BBA》1982,680(3):250-257
(1) The inactivation of cyanide-sensitive, copper- and zinc-containing superoxide dismutase activity in chloroplasts following cold and dark storage of both detached leaves and growing tomato plants is accompanied by a decrease in copper and zinc content in both chloroplast preparations and butanol extracts of the enzyme. In contrast, this treatment of chloroplast preparations affects neither superoxide dismutase activity nor copper and zinc content. (2) Copper- and zinc-containing superoxide dismutase is not reactivated following the 2–3 h illumination of cold- and dark-stored detached leaves. However, prolonged illumination of growing seedlings results in the restoration of both the enzyme activity and copper and zinc content in chloroplasts. (3) The data suggest that the dissociation of copper, and probably of zinc, from the enzyme during cold and dark treatment of either detached leaves or growing plants and reincorporation of the metals following the illumination of intact plants are responsible for the reversible inactivation of chloroplast cyanide-sensitive superoxide dismutase of chilling-sensitive plants.  相似文献   

20.
Group A Streptococcus (Streptococcus pyogenes or GAS) causes pharyngitis, severe invasive infections, and the post-infectious syndromes of glomerulonephritis and rheumatic fever. GAS can be internalized and killed by epithelial cells in vitro, a process that may contribute to local innate defense against pharyngeal infection. Secretion of the pore-forming toxin streptolysin O (SLO) by GAS has been reported to stimulate targeted autophagy (xenophagy) upon internalization of the bacteria by epithelial cells. Whereas this process was associated with killing of GAS in HeLa cells, studies in human keratinocytes found SLO production enhanced intracellular survival. To reconcile these conflicting observations, we now report in-depth investigation of xenophagy in response to GAS infection of human oropharyngeal keratinocytes, the predominant cell type of the pharyngeal epithelium. We found that SLO expression was associated with prolonged intracellular survival; unexpectedly, expression of the co-toxin NADase was required for this effect. Enhanced intracellular survival was lost upon deletion of NADase or inactivation of its enzymatic activity. Shortly after internalization of GAS by keratinocytes, SLO-mediated damage to the bacteria-containing vacuole resulted in exposure to the cytosol, ubiquitination of GAS and/or associated vacuolar membrane remnants, and engulfment of GAS in LC3-positive vacuoles. We also found that production of streptolysin S could mediate targeting of GAS to autophagosomes in the absence of SLO, a process accompanied by galectin 8 binding to damaged GAS-containing endosomes. Maturation of GAS-containing autophagosome-like vacuoles to degradative autolysosomes was prevented by SLO pore-formation and by SLO-mediated translocation of enzymatically active NADase into the keratinocyte cytosol. We conclude that SLO stimulates xenophagy in pharyngeal keratinocytes, but the coordinated action of SLO and NADase prevent maturation of GAS-containing autophagosomes, thereby prolonging GAS intracellular survival. This novel activity of NADase to block autophagic killing of GAS in pharyngeal cells may contribute to pharyngitis treatment failure, relapse, and chronic carriage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号