首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Thermolysin is a zinc-metalloendopeptidase secreted by the gram-positive thermophilic bacterium Bacillus thermoproteolyticus. Thermolysin belongs to the gluzinicin family of enzymes, which is selectively inhibited by Steptomyces metalloproteinase inhibitor (SMPI). Very little is known about the interaction between SMPI and thermolysin. Knowledge about the protein-protein interactions is very important for designing new thermolysin inhibitors with possible industrial or pharmaceutical applications. In the present study, two binding modes between SMPI and thermolysin were studied by 2300 picoseconds (ps) of comparative molecular dynamics (MD) simulations and calculation of the free energy of binding using the molecular mechanics-Poisson-Boltmann surface area (MM/PBSA) method. One of the positions, the ‘horizontal arrow head docking’ (HAHD) was similar to the previously proposed binding mode by Tate et al. (Tate, S., Ohno, A., Seeram, S. S., Hiraga, K., Oda, K., and Kainosho, M. J. Mol. Biol. 282, 435–446 (1998)). The other position, the ‘vertical arrow head docking’ (VAHD) was obtained by a manual docking guided by the shape and charge distribution of SMPI and the binding pocket of thermolysin. The calculations showed that SMPI had stronger interactions with thermolysin in the VAHD than in the HAHD complex, and the VAHD complex was considered more realistic than the HAHD complex. SMPI interacted with thermolysin not only at the active site but had auxiliary binding sites contributing to proper interactions. The VAHD complex can be used for designing small molecule inhibitors mimicking the SMPI-thermolysin binding interfaces.  相似文献   

2.
The effects of certain physicochemical parameters on the formation and stability of a complex between Streptomyces proteinaceous metalloprotease inhibitor (SMPI) and thermolysin were investigated. SMPI had its lowest Ki value at a pH of around 6.5 (similar to the pH dependence of the kcat/K(m) of thermolysin catalysis), reflecting the splitting mechanism of the SMPI inhibition of thermolysin. This Ki increased with an increase in pressure, and in (Ki-1) was almost linear with respect to pressure. The volume of the reaction (delta Vcomp), which is the volume change accompanying enzyme-inhibitor complex formation, was calculated as +8.1 +/- 0.3 mL.mol-1, which has a sign opposite to delta Vcomp for neutral peptide inhibitors and acyl-peptide substrates. The temperature dependence of Ki-1 gave the reaction enthalpy (delta Hcomp) and reaction entropy (delta Scomp) of the complex formation as 34.6 +/- 1.4 kJ.mol-1 and 298 +/- 5 J.mol-1.K-1, respectively. These positive reaction volumes and reaction entropies were related to the electrostatic interactions and ionic strength dependence of Ki which corresponded to the key ionic interaction during complex formation. Complex formation with SMPI stabilized thermolysin against pressure perturbation as observed by the changes in the Trp fluorescence of thermolysin with increasing pressure. Thermal stability, however, was affected very little by complex formation with SMPI. Phosphoramidon, Cbz-Phe-Gly-NH2 and Cbz-Phe also positively affected the pressure-tolerance of thermolysin, in the following order: Cbz-Gly-Phe-NH2 < Cbz-Phe < phosphoramidon. The third compound exhibited stabilizing effects comparable with those of SMPI, which suggests that the interaction between SMPI and thermolysin was localized to the reactive site.  相似文献   

3.
Pseudolysin, the extracellullar elastase of Pseudomonas aeruginosa (EC: 3.4.24.26) plays an important role in the pathogenesis of P. aeruginosa infections. In the present study, molecular dynamics simulations and theoretical affinity predictions were used to gain molecular insight into pseudolysin inhibition. Four low molecular weight inhibitors were docked at their putative binding sites and molecular dynamics (MD) simulations were performed for 5.0 ns, and the free energy of binding was calculated by the linear interaction energy method. The number and the contact surface area of stabilizing hydrophobic, aromatic, and hydrogen bonding interactions appears to reflect the affinity differences between the inhibitors. The proteinaceous inhibitor, Streptomyces metalloproteinase inhibitor (SMPI) was docked in three different binding positions and MD simulations were performed for 3.0 ns. The MD trajectories were used for molecular mechanics-Poisson-Boltzmann surface area analysis of the three binding positions. Computational alanine scanning of the average pseudolysin-SMPI complexes after MD revealed residues at the pseudolysin-SMPI interface giving the main contribution to the free energy of binding. The calculations indicated that SMPI interacts with pseudolysin via the rigid active site loop, but that also contact sites outside this loop contribute significantly to the free energy of association.  相似文献   

4.
The modes of binding to thermolysin of two phosphonamidate peptide inhibitors, carbobenzoxy-GlyP-L-Leu-L-Leu (ZGPLL) and carbobenzoxy-L-PheP-L-Leu-L-Ala (ZFPLA), have been determined by X-ray crystallography and refined at high resolution to crystallographic R-values of 17.7% and 17.0%, respectively. (GlyP is used to indicate that the trigonal carbon of the peptide linkage is replaced by the tetrahedral phosphorus of a phosphonamidate group.). These inhibitors were designed to be structural analogues of the presumed catalytic transition state and are potent inhibitors of thermolysin (ZGPLL, Ki = 9.1 nM; ZFPLA, Ki = 0.068 nM) [Bartlett, P. A., & Marlowe, C. K. (1987) Biochemistry (following paper in this issue)]. ZFPLA binds to thermolysin in the manner expected for the transition state and, for the first time, provides direct support for the presumed mode of binding of extended substrates in the S2 subsite. The mode of binding of ZFPLA displays all the interactions that are presumed to stabilize the transition state and supports the postulated mechanism of catalysis [Hangauer, D. G., Monzingo, A. F., & Matthews, B. W. (1984) Biochemistry 23, 5730-5741]. The two oxygens of the phosphonamidate moiety are liganded to the zinc to give overall pentacoordination of the metal. For the second inhibitor the situation is different. Although both ZFPLA and ZGPLL have similar modes of binding in the S1' and S2' subsites, the configurations of the carbobenzoxy-Phe and carbobenzoxy-Gly moieties are different. For ZFPLA the carbonyl group of the carbobenzoxy group is hydrogen bonded directly to the enzyme, whereas in ZGPLL the carbonyl group is rotated 117 degrees, and there is a water molecule interposed between the inhibitor and the enzyme. For ZGPLL only one of the phosphonamidate oxygens is liganded to the zinc. Correlated with the change in inhibitor-zinc ligation from monodentate in ZGPLL to bidentate in ZFPLA there is an increase in the phosphorus-nitrogen bond length of about 0.25 A, strongly suggesting that the phosphonamide nitrogen in ZFPLA is cationic, analogous to the doubly protonated nitrogen of the transition state. The observation that the nitrogen of ZFPLA appears to donate two hydrogen bonds to the protein also indicates that it is cationic. The different configurations adopted by the respective inhibitors are correlated with large differences in their kinetics of binding [Bartlett, P. A., & Marlowe, C. K. (1987) Biochemistry (following paper in this issue)]. These differences in kinetics are not associated with any significant conformational change on the part of the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Alcohols inhibit the thermolysin-catalyzed hydrolysis of N-[3-(2-furyl)acryloyl]-Gly-L-Leu-NH(2) and decrease the NaCl-induced activation of thermolysin in a concentration-dependent manner [K. Inouye et al. (1997) J. Biochem. 122, 358-364]. In this study, the inhibitory effects of alcohols on thermolysin activity were examined in detail using 10 different alcohols and a fluorescent substrate, (7-methoxycoumarin-4-yl) acetyl-L-Pro-L-Leu-Gly-L-Leu-[N(3)-(2,4-dinitrophenyl)-L-2,3-diamino-propionyl]-L-Ala-L-Arg-NH(2). The inhibition by all alcohols examined is completely reversible, and thermolysin activity is recovered by dilution. The inhibitor constants (K(i)) are in the range of 35-430 mM, and the order of the inhibitory effect is 1-pentanol, 1-propanol, 2-butanol, 2-methyl-1-propanol > 1-butanol > 2-propanol > ethanol, tert-amyl alcohol > tert-butyl alcohol > methanol. Linear and secondary alcohols whose mains chains consist of more than 3 carbons inhibit thermolysin effectively. Thermolysin activity is decreased by decreasing the dielectric constant, D, of the reaction medium containing the alcohol, and the decrease depending on the D value was almost the same manner for all alcohols except methanol, tert-butyl alcohol, and tert-amyl alcohol. Alcohols may inhibit thermolysin activity both by binding to the active site, most possibly to the S1' subsite, of thermolysin and by altering the electrostatic and hydrophobic environment around the thermolysin molecule.  相似文献   

6.
C Vita  D Dalzoppo  A Fontana 《Biochemistry》1985,24(7):1798-1806
Incubation of the neutral metalloendopeptidase thermolysin at pH 9-10 in the presence of 10 mM CaCl2 for 2 days at room temperature with subtilisin at a 50:1 molar ratio leads to a derivative possessing lower (approximately 3%) but intrinsic catalytic activity. This derivative, called thermolysin S, was isolated by gel filtration in approximately 80% yield and then separated from some residual intact thermolysin by an affinity chromatographic step on Sepharose-Gly-D-Phe. It was found that thermolysin S results from a tight association of two polypeptide fragments of apparent Mr of 24000 and 10000. Dissociation of the complex was achieved under strong denaturing conditions, such as gel filtration on a column equilibrated and eluted with 5 M guanidine hydrochloride. The positions of the clip sites were defined by amino acid analysis, end-group determination, and amino acid sequencing of the isolated fragments and shown to lie between Thr-4 and Ser-5, between Thr-224 and Gln-225, and also between Gln-225 and Asp-226. Thermolysin S, which is therefore a stable complex of fragments 5-224(225) and 225(226)-316, shows a shift in optimum pH of about 1 unit toward the acid range with respect to intact thermolysin and a Km essentially unchanged, with furylacryloyl-Gly-Leu-NH2 as substrate. Inhibitors of thermolysin such as ethoxyformic anhydride and Zn2+ ions inactivate also the nicked enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The three-dimensional structures of (S)-thiorphan and (R)-retro-thiorphan bound to thermolysin have been determined crystallographically and refined to residuals of 0.183 and 0.187 at 1.7-A resolution. Thiorphan [N-[(S)-2-(mercaptomethyl)-1-oxo-3-phenylpropyl]glycine] [HSCH2CH(CH2C6H5)CONHC-H2COOH] and retro-thiorphan [[[(R)-1-(mercaptomethyl)-2-phenylethyl] amino]-3-oxopropanoic acid] [HSCH2CH(CH2C6H5)NHCOCH2COOH] are isomeric thiol-containing inhibitors of endopeptidase EC 24-11 (also called "enkephalinase"). The mode of binding of thiorphan to thermolysin is similar to that of (2-benzyl-3-mercaptopropanoyl)-L-alanylglycinamide [Monzingo, A.F., & Matthews, B.W. (1982) Biochemistry 21, 3390-3394] with the inhibitor sulfur atom coordinated to the active site zinc and the peptide portion forming substrate-like interactions with the enzyme. The isomeric inhibitor retro-thiorphan, which differs from thiorphan by the inversion of an amide bond, utilizes very similar interactions with enzyme. Despite the inversion of the -CO-NH- linkage the carbonyl oxygen and amide nitrogen display very similar hydrogen bonding, as anticipated by B.P. Roques et al. [(1983) Proc. Natl. Acad. Sci. U.S.A. 80, 3178-3182]. These results explain why thermolysin and possibly other zinc endopeptidases such as endopeptidase EC 24-11 fail to discriminate between these retro-inverso inhibitors.  相似文献   

8.
The binding of indirubin-5-sulphonate (E226), a potential anti-tumour agent and a potent inhibitor (IC(50) = 35 nm) of cyclin-dependent kinase 2 (CDK2) and glycogen phosphorylase (GP) has been studied by kinetic and crystallographic methods. Kinetic analysis revealed that E226 is a moderate inhibitor of GPb (K(i) = 13.8 +/- 0.2 micro m) and GPa (K(i) = 57.8 +/- 7.1 micro m) and acts synergistically with glucose. To explore the molecular basis of E226 binding we have determined the crystal structure of the GPb/E226 complex at 2.3 A resolution. Structure analysis shows clearly that E226 binds at the purine inhibitor site, where caffeine and flavopiridol also bind [Oikonomakos, N.G., Schnier, J.B., Zographos, S.E., Skamnaki, V.T., Tsitsanou, K.E. & Johnson, L.N. (2000) J. Biol. Chem.275, 34566-34573], by intercalating between the two aromatic rings of Phe285 and Tyr613. The mode of binding of E226 to GPb is similar, but not identical, to that of caffeine and flavopiridol. Comparative structural analyses of the GPb-E226, GPb-caffeine and GPb-flavopiridol complex structures reveal the structural basis of the differences in the potencies of the three inhibitors and indicate binding residues in the inhibitor site that can be exploited to obtain more potent inhibitors. Structural comparison of the GPb-E226 complex structure with the active pCDK2-cyclin A-E226 complex structure clearly shows the different binding modes of the ligand to GPb and CDK2; the more extensive interactions of E226 with the active site of CDK2 may explain its higher affinity towards the latter enzyme.  相似文献   

9.
By means of a sensitive electrophoretic technique for the detection of proteinase inhibitors three slowly migrating proteinase inhibitors (SMPI) were discovered in some samples of pathological urine. SMPI 1 migrated in the beta 2-zone whereas SMPI 2 and SMPI 3 appeared in the anodal and cathodal gamma-zone, respectively. Only SMPI 1 and 2 were examined in detail. These were found to inhibit tryptic and elastolytic digestion, but not chymotryptic or plasminolytic digestion of casein. Immunological investigations revealed no similarity to normally occurring proteinase inhibitors in serum and urine. The SMPIs from one sample of urine were partially purified by DEAE-Sephadex ion exchange chromatography, followed by gel filtration on Sephacryl superfine 200. This procedure did not separate the two inhibitors. The molecular masses were estimated to be 25 000 Da by gel filtration, and 23000-26500 Da by SDS polyacrylamide gel electrophoresis.  相似文献   

10.
The hydrophobic S1' subsite is one of the major determinants of the substrate specificity of thermolysin and related M4 family proteases. In the thermolysin-like protease (TLP) produced by Bacillus stearothermophilus (TLP-ste), the hydrophobic S1' subsite is mainly formed by Phe130, Phe133, Val139 and Leu202. In the present study, we have examined the effects of replacing Leu202 by smaller (Gly, Ala, Val) and larger (Phe, Tyr) hydrophobic residues. The mutational effects showed that the wild-type S1' pocket is optimal for binding leucine side chains. Reduction of the size of residue 202 resulted in a higher efficiency towards substrates with Phe in the P1' position. Rather unexpectedly, the Leu202-->Phe and Leu202-->Tyr mutations, which were expected to decrease the size of the S1' subsite, resulted in a large increase in activity towards dipeptide substrates with Phe in the P1' position. This is probably due to the fact that 202Phe and 202Tyr adopt a second possible rotamer that opens up the subsite compared to Leu202, and also favours interactions with the substrate. To validate these results, we constructed variants of thermolysin with changes in the S1' subsite. Thermolysin and TLP-ste variants with identical S1' subsites were highly similar in terms of their preference for Phe vs. Leu in the P1' position.  相似文献   

11.
Thermolysin activity as well as its stability is remarkably enhanced by high concentration of neutral salts consisting of Na(+), K(+), Cl(-) and Br(-) in the synthesis and hydrolysis of N-carbobenzoxy-L-aspertyl-L-phenylalanine methyl ester and hydrolysis of N-[3-(2-furyl)acryloyl]-glycyl-L-leucine amide (FAGLA) [Inouye, K. (1992) J. Biochem. 112, 335-340]. However, effect of divalent salts on thermolysin activity has not been investigated systematically. In this study, effect of Co(2+) ion on thermolysin activity in the hydrolysis of FAGLA was examined. Thermolysin activity increased 3-4 times with increasing the Co(2+) concentration to 2 mM, but the enhanced activity was considerably reduced with higher Co(2+) concentration (2-18 mM). The activation-and-inhibition dual effects of Co(2+) ion were analysed kinetically. Release of the catalytic Zn(2+) ion from thermolysin, concomitantly occurred with the Co(2+)-dependent activation, was measured with a Zn(2+)-specific fluorescent probe. This indicates that the activation is caused by substituting Co(2+) ion for the catalytic Zn(2+) ion. Meanwhile, the Co(2+)-dependent activation was inhibited competitively by Zn(2+) ion (0.1-1.0 muM) added, similarly to that it is inhibited by higher concentration of Co(2+) ion. These lines of evidence provide a strategy for regulating thermolysin activity with Co(2+) and Zn(2+) ions.  相似文献   

12.
The zinc-containing neutral endopeptidase (neutral protease: BANP) from Bacillus subtilis var. amylosacchariticus was inhibited by the proteinaceous metalloprotease inhibitor isolated from Streptomyces nigrescens (SMPI). The degree of inhibition was, however, significantly less than that for thermolysin (TLN). During incubation of BANP with SMPI, the inhibitor was proteolytically degraded and inactivated. Analysis of the digestion products suggested that a minor diversity in their substrate specificities between TLN and BANP affects the sensitivity to the proteinaceous metalloprotease inhibitor, SMPI.  相似文献   

13.
The zinc-containing neutral endopeptidase (neutral protease: BANP) from Bacillus subtilis var. amylosacchariticus was inhibited by the proteinaceous metalloprotease inhibitor isolated from Streptomyces nigrescens (SMPI). The degree of inhibition was, however, significantly less than that for thermolysin (TLN). During incubation of BANP with SMPI, the inhibitor was proteolytically degraded and inactivated. Analysis of the digestion products suggested that a minor diversity in their substrate specificities between TLN and BANP affects the sensitivity to the proteinaceous metalloprotease inhibitor, SMPI.  相似文献   

14.
The bacterial metalloproteinase thermolysin catalyzes the efficient activation of pro-urokinase to an active high-molecular-weight form of the protein. Thermolysin and plasmin convert pro-urokinase to enzymes of essentially equal activities in amidolytic assays, but with different molecular structures. The B-chains of the proteins produced by thermolysin and plasmin are of the same size (33 kDa) and have the same amino-terminal sequences, demonstrating that the cleavage of the Lys158-Ile159 bond of pro-urokinase is catalyzed by both enzymes. However, thermolysin also reacts at additional sites in the growth factor domain of the A-chain at nearly the same rate as that of the activation reaction. Polypeptides derived from hydrolyses of the Glu3-Leu4, Tyr24-Phe25, Asn27-Ile28 and Lys36-Phe37 bonds are recovered after reduction of the activated protein. The carboxy-terminus of the A-chain has been shown to be Arg-156, a consequence of proteolysis of the Arg156-Phe157 bond. In contrast to plasmin, thermolysin activates thrombin-inactivated pro-urokinase nearly as rapidly as it does the native zymogen. Thermolysin provides a useful alternative to plasmin for the catalytic activation and analysis of pro-urokinase, since the bacterial metalloproteinase is stable in solution and not susceptible to inhibition by aprotinin and other serine proteinase inhibitors.  相似文献   

15.
The K103N substitution is a frequently observed HIV-1 RT mutation in patients who do not respond to combination-therapy. The drugs Efavirenz, MSC194 and PNU142721 belong to the recent generation of NNRTIs characterized by an improved resistance profile to the most common single point mutations within HIV-1 RT, including the K103N mutation. In the present study we present structural observations from Efavirenz in complex with wild-type protein and the K103N mutant and PNU142721 and MSC194 in complex with the K103N mutant. The structures unanimously indicate that the K103N substitution induces only minor positional adjustments of the three inhibitors and the residues lining the binding pocket. Thus, compared to the corresponding wild-type structures, these inhibitors bind to the mutant in a conservative mode rather than through major rearrangements. The structures implicate that the reduced inhibitory efficacy should be attributed to the changes in the chemical environment in the vicinity of the substituted N103 residue. This is supported by changes in hydrophobic and electrostatic interactions to the inhibitors between wild-type and K103N mutant complexes. These potent inhibitors accommodate to the K103N mutation by forming new interactions to the N103 side chain. Our results are consistent with the proposal by Hsiou et al. [Hsiou, Y., Ding, J., Das, K., Clark, A.D. Jr, Boyer, P.L., Lewi, P., Janssen, P.A., Kleim, J.P., Rosner, M., Hughes, S.H. & Arnold, E. (2001) J. Mol. Biol. 309, 437-445] that inhibitors with good activity against the K103N mutant would be expected to have favorable interactions with the mutant asparagines side chain, thereby compensating for resistance caused by stabilization of the mutant enzyme due to a hydrogen-bond network involving the N103 and Y188 side chains.  相似文献   

16.
H Jhoti  A Cleasby  S Reid  P J Thomas  M Weir  A Wonacott 《Biochemistry》1999,38(25):7969-7977
The binding modes of four active site-directed, acylating inhibitors of human alpha-thrombin have been determined using X-ray crystallography. These inhibitors (GR157368, GR166081, GR167088, and GR179849) are representatives of a series utilizing a novel 5, 5-trans-lactone template to specifically acylate Ser195 of thrombin, resulting in an acyl complex. In each case the crystal structure of the complex reveals a binding mode which is consistent with the formation of a covalent bond between the ring-opened lactone of the inhibitor and residue Ser195. Improvements in potency and selectivity of these inhibitors for thrombin are rationalized on the basis of the observed protein/inhibitor interactions identified in these complexes. Occupation of the thrombin S2 and S3 pockets is shown to be directly correlated with improved binding and a degree of selectivity. The binding mode of GR179849 to thrombin is compared with the thrombin/PPACK complex [Bode, W., Turk, D., and Karshikov, A. (1992) Protein Sci. 1, 426-471] as this represents the archetypal binding mode for a thrombin inhibitor. This series of crystal structures is the first to be reported of synthetic, nonpeptidic acylating inhibitors bound to thrombin and provides details of the molecular recognition features that resulted in nanomolar potency.  相似文献   

17.
The chemical shift of the carboxylate carbon of Z-tryptophan is increased from 179.85 to 182.82 ppm and 182.87 ppm on binding to thermolysin and stromelysin-1 respectively. The chemical shift of Z-phenylalanine is also increased from 179.5 ppm to 182.9 ppm on binding to thermolysin. From pH studies we conclude that the pK(a) of the inhibitor carboxylate group is lowered by at least 1.5 pK(a) units when it binds to either enzyme. The signal at ~183 ppm is no longer observed when the active site zinc atom of thermolysin or stromelysin-1 is replaced by cobalt. We estimate that the distance of the carboxylate carbon of Z-[1-(13)C]-L-tryptophan is ≤3.71? from the active site cobalt atom of thermolysin. We conclude that the side chain of Z-[1-(13)C]-L-tryptophan is not bound in the S(2)' subsite of thermolysin. As the chemical shifts of the carboxylate carbons of the bound inhibitors are all ~183 ppm we conclude that they are all bound in a similar way most probably with the inhibitor carboxylate group directly coordinated to the active site zinc atom. Our spectrophotometric results confirm that the active site zinc atom is tetrahedrally coordinated when the inhibitors Z-tryptophan or Z-phenylalanine are bound to thermolysin.  相似文献   

18.
Interactive computer graphics was used as a tool in studying the cleavage mechanism of the model substrate Z-Phe-Phe-Leu-Trp by the zinc endopeptidase thermolysin. Two Michaelis complexes and three binding orientations of the tetrahedral intermediate to the crystal structure of thermolysin were investigated. Our results indicate that a Michaelis complex, which does not involve coordination of the scissile peptide to the zinc, is consistent with available experimental data and the most plausible of the two complexes. A tetrahedral intermediate complex wherein the two oxygens of the hydrated scissile peptide straddle the zinc in a bidentate fashion results in the most favorable interactions with the active site. The preferred tetrahedral intermediate and Michaelis complex provide a rationalization for the published substrate data. A trajectory for proceeding from the Michaelis complex to the tetrahedral intermediate is proposed. This trajectory involves a simultaneous activation of the zinc-bound water molecule concurrent with attack on the scissile peptide. A detailed ordered product release mechanism is also presented. These studies suggest some modifications and a number of extensions to the mechanism proposed earlier [Kester, W. R., & Matthews, B. W. (1977) Biochemistry 16, 2506; Holmes, M. A., & Matthews, B. W. (1981) Biochemistry 20, 6912]. The binding mode of the thermolysin inhibitor N-(1-carboxy-3-phenylpropyl)-L-leucyl-L-tryptophan [Monzingo, A. F., & Matthews, B. W. (1984) Biochemistry (preceding paper in this issue)] is compared with that of the preferred tetrahedral intermediate, providing insight into this inhibitor design.  相似文献   

19.
Thermolysin is remarkably activated and stabilized by neutral salts, and surface charges are suggested important in its activity and stability. The effects of introducing negative charge into the molecular surface on its activity and stability are described. Seven serine residues were selected, and each of them was changed for aspartate by site-directed mutagenesis in a thermolysin mutant. In the hydrolysis of N-[3-(2-furyl)acryloyl]-glycyl-l-leucine amide, the k(cat)/K(m) values of all mutants were almost similar to that of the wild-type enzyme (WT). However, those of six out of seven mutants were enhanced 17-19 times with 4 M NaCl, being slightly higher than WT. The remaining casein-hydrolyzing activities of the S53D and S65D mutants (Ser53 and Ser65 are replaced with Asp, respectively) after 30-min incubation with 10 mM CaCl(2) at 85 degrees C were 78 and 63%, being higher than those of WT (51%) and the other mutants (35-53%). S53D was stabilized with increase in the enthalpy change of activation for thermal inactivation while S65D was with decrease in the entropy change of activation. The stability of WT was enhanced by CaCl(2) and reached the level of S53D and S65D at 100 mM, suggesting that S53D and S65D might be stabilized by reinforcement of the Ca(2+)-binding structures.  相似文献   

20.
A series of inhibitors that bear a reversed hydroxamate moiety have been evaluated as transition state analogue inhibitors for thermolysin. A linear correlation is observed between the K(i) values of these inhibitors and the kinetic parameters (K(M)/k(cat)) of the parallel series of related substrates, satisfying the criterion stipulated for transition state analogue inhibitors by Bartlett and Marlowe. Furthermore, examination of the binding mode of a related reversed hydroxamate bearing thermolysin inhibitor, in comparison with a transition state postulated for the enzyme-catalyzed proteolytic reaction revealed that the inhibitors under study mimic the electronic as well as the geometric characteristics of the transition state. On the basis of these results it may be concluded that the hydroxamate-bearing zinc protease inhibitors are a new type of transition state analogue inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号