首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A wet suit may not provide adequate thermal protection when diving in moderately cold water (17–18°C), and any resultant mild hypothermia may impair performance during prolonged diving. We studied heat exchange during a dive to a depth of 5 m in sea water (17–18.5°C) in divers wearing a full wet suit and using closed-circuit oxygen breathing apparatus. Eight fin swimmers dived for 3.1 h and six underwater scooter (UWS) divers propelled themselves through the water for 3.7 h. The measurements taken throughout the dive were the oxygen pressure in the cylinder and skin and rectal temperatures (T re). Each subject also completed a cold score questionnaire. The T re decreased continuously in all subjects. Oxygen consumption in the fin divers (1.40 l · min−1) was higher than that of the UWS divers (1.05 l · min−1). The mean total insulation was 0.087°C · m2 · W−1 in both groups. Mean body insulation was 37% of the total insulation (suit insulation was 63%). The reduction in T re over the 1st hour was related to subcutaneous fat thickness. There was a correlation between cold score and T re at the end of 1 h, but not after that. A full wet suit does not appear to provide adequate thermal protection when diving in moderately cold water. Accepted: 21 January 1997  相似文献   

2.
Diving behaviour was investigated in female subantarctic fur seals (Arctocephalus tropicalis) breeding on Amsterdam Island, Indian Ocean. Data were collected using electronic Time Depth Recorders on 19 seals during their first foraging trip after parturition in December, foraging trips later in summer, and during winter. Subantarctic fur seals at Amsterdam Island are nocturnal, shallow divers. Ninety-nine percent of recorded dives occurred at night. The diel dive pattern and changes in dive parameters throughout the night suggest that fur seals follow the nycthemeral migrations of their main prey. Seasonal changes in diving behaviour amounted to the fur seals performing progressively deeper and longer dives from their first foraging trip through winter. Dive depth and dive duration increased from the first trip after parturition (16.6 ± 0.5 m and 62.1 ± 1.6 s respectively, n=1000) to summer (19.0 ± 0.4 m and 65 ± 1 s, respectively, n=2000) through winter (29.0 ± 1.0 m and 91.2 ± 2.2 s, respectively, n=800). In summer, subantarctic fur seals increased the proportion of time spent at the bottom during dives of between 10 and 20 m, apparently searching for prey when descending to these depths, which corresponded to the oceanic mixed layer. In winter, fur seals behaved similarly when diving between 20 and 50 m, suggesting that the most profitable depths for feeding moved down during the study period. Most of the dives did not exceed the physiological limits of individuals. Although dive frequency did not vary (10 dives/h of night), the vertical travel distance and the time spent diving increased throughout the study period, while the post-dive interval decreased, indicating that subantarctic fur seals showed a greater diving effort in winter, compared to earlier seasons. Accepted: 1 August 1999  相似文献   

3.
The distribution, movements and diving of high-arctic harbour seals (Phoca vitulina) were studied in Svalbard, Norway, from 1992 to 1995. A total of 14 seals were equipped with satellite transmitters at Prins Karls Forland (ca. 78°30′N 12°E). These gave data on position, but ten also gave information on dive depths (N ∼ 160,000) and dive durations (N ∼ 162,000). Dive-depth frequencies show that ∼50% of the diving is shallower than 40 m, and that 95% of the diving is shallower than 250 m. Based on dive-duration frequencies, ∼50% of the dives lasted 2–4 min, 90% of the dives lasted less than 7 min, and 97% were shorter than 10 min. All but three seals stayed in the tagging area. Accepted: 6 October 2000  相似文献   

4.
Many diving seabirds and marine mammals have been found to regularly exceed their theoretical aerobic dive limit (TADL). No animals have been found to dive for durations that are consistently shorter than their TADL. We attached time-depth recorders to 7 blue whales and 15 fin whales (family Balaenopteridae). The diving behavior of both species was similar, and we distinguished between foraging and traveling dives. Foraging dives in both species were deeper, longer in duration and distinguished by a series of vertical excursions where lunge feeding presumably occurred. Foraging blue whales lunged 2.4 (+/-1.13) times per dive, with a maximum of six times and average vertical excursion of 30.2 (+/-10.04) m. Foraging fin whales lunged 1.7 (+/-0.88) times per dive, with a maximum of eight times and average vertical excursion of 21.2 (+/-4.35) m. The maximum rate of ascent of lunges was higher than the maximum rate of descent in both species, indicating that feeding lunges occurred on ascent. Foraging dives were deeper and longer than non-feeding dives in both species. On average, blue whales dived to 140.0 (+/-46.01) m and 7.8 (+/-1.89) min when foraging, and 67.6 (+/-51.46) m and 4.9 (+/-2.53) min when not foraging. Fin whales dived to 97.9 (+/-32.59) m and 6.3 (+/-1.53) min when foraging and to 59.3 (+/-29.67) m and 4.2 (+/-1.67) min when not foraging. The longest dives recorded for both species, 14.7 min for blue whales and 16.9 min for fin whales, were considerably shorter than the TADL of 31.2 and 28.6 min, respectively. An allometric comparison of seven families diving to an average depth of 80-150 m showed a significant relationship between body mass and dive duration once Balaenopteridae whales, with a mean dive duration of 6.8 min, were excluded from the analysis. Thus, the short dive durations of blue whales and fin whales cannot be explained by the shallow distribution of their prey. We propose instead that short duration diving in large whales results from either: (1) dispersal behavior of prey; or (2) a high energetic cost of foraging.  相似文献   

5.
Bradycardia is an important component of the dive response, yet little is known about this response in immature marine mammals. To determine if diving bradycardia improves with age, cardiac patterns from trained immature and mature bottlenose dolphins (Tursiops truncatus) were recorded during three conditions (stationary respiration, voluntary breath-hold, and shallow diving). Maximum (mean: 117±1 beats·min–1) and resting (mean: 101±5 beats·min–1) heart rate (HR) at the water surface were similar regardless of age. All dolphins lowered HR in response to apnea; mean steady state breath-hold HR was not correlated with age. However, the ability to reduce HR while diving improved with age. Minimum and mean steady state HR during diving were highest for calves. For example, 1.5–3.5-year-old calves had significantly higher mean steady state diving HR (51±1 beats·min–1) than 3.5–5.5-year-old juveniles (44±1 beats·min–1). As a result, older dolphins demonstrated greater overall reductions in HR during diving. Longitudinal studies concur; the ability to reduce HR improved as individual calves matured. Thus, although newly weaned calves as young as 1.7 years exhibit elements of cardiac control, the capacity to reduce HR while diving improves with maturation up to 3.5 years postpartum. Limited ability for bradycardia may partially explain the short dive durations observed for immature marine mammals.Abbreviations ADL aerobic dive limit - cADL calculated aerobic dive limit - ECG electrocardiogram - HR heart rate - TDR time–depth recorder Communicated by L.C.-H. Wang  相似文献   

6.
Diving birds can lose significant body heat to cold water, but costs can be reduced if heat from exercising muscles or the heat increment of feeding (HIF) can substitute for thermogenesis. Potential for substitution depends jointly on the rate of heat loss, the rate of heat produced by exercise, and the level of HIF. To explore these interactions, we measured oxygen consumption by lesser scaup ducks (Aythya affinis) diving to depths of 1.2 and 2 m at thermoneutral (23°C) and sub-thermoneutral (18 and 8°C) temperatures. Birds dove while fasted and when feeding on blue mussels (Mytilus edulis). Substitution occurred if HIF or costs of diving above resting metabolic rate (RMR) were lower at 18 or 8°C than at 23°C, indicating reduction in the thermoregulatory part of RMR. For fasted scaup diving to 1.2 m, substitution from exercise heat was not apparent at either 18 or 8°C. At 2 m depth, dive costs above RMR were reduced by 5% at 18°C and by 40% at 8°C, indicating substitution. At 1.2 m depth (with voluntary intake of only 14–17% of maintenance requirements), HIF did not differ between temperatures, indicating no substitution. However, at 2 m (intake 13–25% of maintenance), substitution from HIF was 23% of metabolizable energy intake at 18°C and 22% at 8°C. These results show that even with low HIF due to low intake rates, substitution from HIF can add to substitution from the heat of exercise.  相似文献   

7.
The seasonal variation in the foraging behaviour of king penguins (Aptenodytes patagonicus) was studied at Heard Island (53°05′S, 73°30′E) during 1992/1993. On seven occasions throughout the breeding cycle, time-depth-light recorders were deployed on breeding adults to record the dive activities and foraging. Foraging locations changed with season: in autumn and spring 1992, adults foraged between 48–52°S and 74–78°E, about 370 km NNE of Heard Island close to the Polar Front. Two penguins tracked in winter travelled 2220 km east of Heard Island (95°E) along the northern ice limit, and 1220 km south of Heard Island to approximately 65°S, respectively. In spring (October), the penguins again foraged further north than during winter. The foraging area utilised in October overlapped the area where the penguins foraged in March/April. The penguins' diving behaviour also varied seasonally: the modal depth of deep dives (>50 m) increased from about 100 m in February to 220 m in October. Mean dive depths increased from 70 ± 52 m in March 1992 to 160 ± 68 m in August 1992. Penguins dived deep (>50 m) only during daylight hours (16 h in February, 9 h in July). Mean dive durations ranged from 2.9 ± 1.1 min in March 1992 to 5.1 ± 1.2 min in August 1992. Associated with changes in foraging location and dive behaviour was a change in diet composition: during summer the penguins ingested mainly myctophid fish (>90%) while in winter the most important diet item was squid. Accepted: 19 October 1998  相似文献   

8.
Eight fit men [maximum oxygen consumption (O2max) 64.6 (1.9) ml · kg−1 · min−1, aged 28.3 (1.7) years (SE in parentheses) were studied during two treadmill exercise trials to determine the effect of endogenous opioids on insulin and glucagon immunoreactivity during intense exercise (80% O2max). A double-blind experimental design was used with subjects undertaking the two exercise trials in counterbalanced order. Exercise trials were 20 min in duration and were conducted 7 days apart. One exercise trial was undertaken following administration of naloxone (N; 1.2 mg; 3 ml) and the other after receiving a placebo (P; 0.9% NaCl saline; 3 ml). Prior to each experimental trial a flexible catheter was placed into an antecubital vein and baseline blood samples were collected. Immediately after, each subject received either a N or P bolus injection. Blood samples were also collected after 20 min of continuous exercise (running). Glucagon was higher (P < 0.05), while insulin was lower (P < 0.05), during exercise compared with pre-exercise values in both trials. However, glucagon was higher (P < 0.05) in the P than in the N exercise trial [141.4 (8.3) ng · l−1 vs 127.2 (7.6) ng · l−1]. There were no differences in insulin during exercise between the P and N trials [50.2 (4.3) pmol · l−1 vs 43.8 (5) pmol · l−1]. These data suggest that endogenous opioids may augment the glucagon response during intense exercise. Accepted: 15 June 1996  相似文献   

9.
The respiratory physiology, heart rates and metabolic rates of two captive juvenile male harbour porpoises (both 28 kg) were measured using a rapid-response respiratory gas analysis system in the laboratory. Breath-hold durations in the laboratory (12 ± 0.3 s, mean ± SEM) were shorter than field observations, although a few breath-holds of over 40 s were recorded. The mean percentage time spent submerged was 89 ± 0.4%. Relative to similarly-sized terrestrial mammals, the respiratory frequency was low (4.9 ± 0.19 breaths · min−1) but with high tidal volumes (1.1 ± 0.01 l), enabling a comparatively high minute rate of gas exchange. Oxygen consumption under these experimental conditions (247 ± 13.8 ml O2 · min−1) was 1.9-fold higher than predicted by standard scaling relations. These data together with an estimate of the total oxygen stores predicted an aerobic dive limit of 5.4 min. The peak end-tidal O2 values were related to the length of the previous breath-hold, demonstrating the increased oxygen uptake from the lung for the longer dives. Blood oxygen capacity was 23.5 ± 1.0 ml · 100 ml−1, and the oxygen affinity was high, enabling rapid oxygen loading during ventilation. Accepted: 11 August 1999  相似文献   

10.
The potential for acoustically mediated causes of stranding in cetaceans (whales and dolphins) is of increasing concern given recent stranding events associated with anthropogenic acoustic activity. We examine a potentially debilitating non-auditory mechanism called rectified diffusion. Rectified diffusion causes gas bubble growth, which in an insonified animal may produce emboli, tissue separation and high, localized pressure in nervous tissue. Using the results of a dolphin dive study and a model of rectified diffusion for low-frequency exposure, we demonstrate that the diving behavior of cetaceans prior to an intense acoustic exposure may increase the chance of rectified diffusion. Specifically, deep diving and slow ascent/descent speed contributes to increased gas-tissue saturation, a condition that amplifies the likelihood of rectified diffusion. The depth of lung collapse limits nitrogen uptake per dive and the surface interval duration influences the amount of nitrogen washout from tissues between dives. Model results suggest that low-frequency rectified diffusion models need to be advanced, that the diving behavior of marine mammals of concern needs to be investigated to identify at-risk animals, and that more intensive studies of gas dynamics within diving marine mammals should be undertaken.  相似文献   

11.
The underwater behaviour of 11 belugas or white whales was examined during summer using time-at-depth records relayed by satellite-linked data-loggers. Simultaneous tracking information was obtained for each whale. Eight distinct dive profiles were identified in submergences made to depths of >40 m. Four of these, together comprising 84% of these “deep” dives, were of a square profile. They were characterised by a continuous descent to a particular depth (usually the sea bed), a “bottom phase” at or near that depth, and a direct ascent to the surface. These dives are presumed to be made for benthic foraging. Other, much less common, dive shapes were “V”-shaped, parabolic and trapezoidal. “Shallow” dives (15–40 m depth) were of a variety of shapes, short duration and high average horizontal speeds. Many probably occurred during periods of directed travel. This population of belugas treats most of the water column as dead space separating resources of oxygen and nutrition. Received: 8 January 1998 / Accepted: 27 April 1998  相似文献   

12.
Three juvenile narwhals captured during August 1998 in the northeast of Svalbard, Norway, were equipped with satellite-relayed data loggers (SRDLs) that transmitted diving and swim-speed data, in addition to location, for up to 46 days. A total of 1,354 complete dive cycles were recorded. Most of the diving was shallow and of short duration. Maximum recorded dive depth was 546 m, maximum recorded dive duration was 24.8 min, and maximum recorded swim-speed was 4.7 ms−1. Ascent speed, vertical ascent speed, descent speed and vertical descent speed were all significantly higher during deep dives (>200 m) than for shallow dives (<200 m). In addition both ascent and descent angles were much steeper for deep dives than during shallow dives. Most of the shallow diving seemed to be associated with travelling, with the animal shifting between various locations, while the deep diving (often to the bottom) for extended periods in some specific areas might have been associated with foraging. Even though the sample size in this study is small, the data are the first information available for movements and diving behaviour of narwhals near Svalbard.  相似文献   

13.
The diving response in marine mammals results in bradycardia and peripheral vasoconstriction, with blood flow redistributing preferentially to nervous and cardiac tissues. Therefore, some tissues are rendered ischemic during a dive; with the first breath after a dive, blood flow to all tissues is reestablished. In terrestrial mammals, reactive oxygen species (ROS) production increases in response to ischemia/reperfusion and oxidative damage can occur. The capacity of marine mammals to tolerate repeated ischemia/reperfusion cycles associated with diving appears to be due to an enhanced antioxidant system. However, it is not known if diving depth and/or duration elicit differences in tissue capacity to produce ROS and antioxidant defenses in marine mammals. The objective of this study was to analyze ROS production, antioxidant defenses and oxidative damage in marine mammal species that perform shallow/short vs. deep/long dives. We measured production of superoxide radical (O2??), oxidative damage to lipids and proteins, activity of antioxidant enzymes, and glutathione levels in tissues from shallow/short divers (Tursiops truncatus) and deep/long divers (Kogia spp.). We found that differences between the diving capacity of dolphins and Kogia spp. are reflected in O2?? production and antioxidant levels. These differences suggest that shallow/short and deep/long divers have distinct mechanisms to successfully maintain redox balance.  相似文献   

14.
When aquatic reptiles, birds and mammals submerge, they typically exhibit a dive response in which breathing ceases, heart rate slows, and blood flow to peripheral tissues is reduced. The profound dive response that occurs during forced submergence sequesters blood oxygen for the brain and heart while allowing peripheral tissues to become anaerobic, thus protecting the animal from immediate asphyxiation. However, the decrease in peripheral blood flow is in direct conflict with the exercise response necessary for supporting muscle metabolism during submerged swimming. In free diving animals, a dive response still occurs, but it is less intense than during forced submergence, and whole-body metabolism remains aerobic. If blood oxygen is not sequestered for brain and heart metabolism during normal diving, then what is the purpose of the dive response? Here, we show that its primary role may be to regulate the degree of hypoxia in skeletal muscle so that blood and muscle oxygen stores can be efficiently used. Paradoxically, the muscles of diving vertebrates must become hypoxic to maximize aerobic dive duration. At the same time, morphological and enzymatic adaptations enhance intracellular oxygen diffusion at low partial pressures of oxygen. Optimizing the use of blood and muscle oxygen stores allows aquatic, air-breathing vertebrates to exercise for prolonged periods while holding their breath.  相似文献   

15.
Tufted ducks Aythya fuligula do not control buoyancy during diving   总被引:1,自引:0,他引:1  
Work against buoyancy during submergence is a large component of the energy costs for shallow diving ducks. For penguins, buoyancy is less of a problem, however they still seem to trade‐off levels of oxygen stores against the costs and benefits of buoyant force during descent and ascent. This trade‐off is presumably achieved by increasing air sac volume and hence pre‐dive buoyancy (Bpre) when diving deeper. Tufted ducks, Aythya fuligula, almost always dive with nearly full oxygen stores so these cannot be increased. However, the high natural buoyancy of tufted ducks guarantees a passive ascent, so they might be expected to decrease Bpre before particularly deep, long dives to reduce the energy costs of diving. Body heat lost to the water can also be a cause of substantial energy expenditure during a dive, both through dissipation to the ambient environment and through the heating of ingested food and water. Thus dive depth (dd), duration and food type can influence how much heat energy is lost during a dive. The present study investigated the relationship between certain physiological and behavioural adjustments by tufted ducks to dd and food type. Changes in Bpre, deep body temperature (Tb) and dive time budgeting of four ducks were measured when diving to two different depths (1.5 and 5.7 m), and for two types of food (mussels and mealworms). The hypothesis was that in tufted ducks, Bpre decreases as dd increases. The ducks did not change Bpre in response to different diving depths, and thus the hypothesis was rejected. Tb was largely unaffected by dives to either depth. However, diving behaviour changed at the greater dd, including an increase in dive duration and vertical descent speed. Behaviour also changed depending on the food type, including an increase in foraging duration and vertical descent speed when mussels were present. Behavioural changes seem to represent the major adjustment made by tufted ducks in response to changes in their diving environment.  相似文献   

16.
Seven post-moulting adult ringed seals (Phoca hispida) were equipped with Satellite Linked Dive Recorders in Svalbard in July 1996 to determine if ringed seals conduct long-distance post-moulting feeding excursions, and to obtain details of their diving behaviour. The mean duration of tags was 206 days (range 103–325). Two seals swam 400 km north to the drifting pack ice (82°N). The rest undertook more local movements. Forty-eight percent of all dives were shallower than 20 m and 90% were shallower than 100 m. Ninety-five percent of all dive durations were shorter than 10 min, and 99.5% were shorter than 15 min. This study has shown that adult ringed seals undertake varying patterns of post-moulting excursions. Accepted: 1 April 2000  相似文献   

17.
The highly specialized coronulid barnacle Xenobalanus globicipitis attaches exclusively on cetaceans worldwide, but little is known about the factors that drive the microhabitat patterns on its hosts. We investigate this issue based on data on occurrence, abundance, distribution, orientation, and size of X. globicipitis collected from 242 striped dolphins (Stenella coeruleoalba) that were stranded along the Mediterranean coast of Spain. Barnacles exclusively infested the fins, particularly along the trailing edge. Occurrence, abundance, and density of X. globicipitis were significantly higher, and barnacles were significantly larger, on the caudal fin than on the flippers and dorsal fin. Barnacles were found more frequently and in greater numbers on the dorsal rather than ventral side of the caudal fin and on the central third of dorsal and ventral fluke surfaces. Nearly all examined individuals attached with their cirral fan oriented opposite to the fluke edge. We suggest that X. globicipitis may chemically recognize dolphins as a substratum, but fins, particularly the flukes, are passively selected because of creation of vortices that increase contact of cyprids with skin and early survival of these larvae at the corresponding sites. Cyprids could actively select the trailing edge and orient with the cirri facing the main direction of flow. Attachment on the dorsal side of the flukes is likely associated with asymmetrical oscillation of the caudal fin, and the main presence on the central segment of the flukes could be related to suitable water flow conditions generated by fluke performance for both settlement and nutrient filtration.  相似文献   

18.
Whereas with advancing age, peak heart rate (HR) and cardiac index (CI) are clearly reduced, peak stroke index (SI) may decrease, remain constant or even increase. The aim of this study was to describe the patterns of HR, SI, CI, arteriovenous difference in oxygen concentration (C a-vO2), mean arterial pressure (MAP), systemic vascular resistance index (SVRI), stroke work index (SWI) and mean systolic ejection rate index (MSERI) in two age groups (A: 20–30 years, n = 20; B: 50–60 years n = 20. After determination of pulmonary function, an incremental bicycle exercise test was performed, with standard gas-exchange measurements and SI assessment using electrical impedance cardiography. The following age-related changes were found: similar submaximal HR response to exercise in both groups and a higher peak HR in A than in B[185 (SD 9) vs 167 (SD 14) beats · min−1, P < 0.0005]; increase in SI with exercise up to 60–90 W and subsequent stabilization in both groups. As SI decreased towards the end of exercise in B, a higher peak SI was found in A [57.5 (SD 14.0) vs 43.6 (SD 7.7) ml · m−2, P < 0.0005]; similar submaximal CI response to exercise, higher peak CI in A [10.6 (SD 2.5) vs 7.2 (SD 1.3) l · min−1 · m−2, P < 0.0005]; no differences in C a-vO2 during exercise; higher MAP at all levels of exercise in B; higher SVRI at all levels of exercise in B; lower SWI in B after recovery; higher MSERI at all levels of exercise in A. The decrease in SI with advancing age would seem to be related to a decrease in myocardial contractility, which can no longer be compensated for by an increase in preload (as during submaximal exercise). Increases in systemic blood pressure may also compromise ventricular function but would seem to be of minor importance. Accepted: 24 September 1996  相似文献   

19.
The purpose of this investigation was to examine if exercise-induced arterial oxyhemoglobin desaturation selectively observed in highly trained endurance athletes could be related to differences in the pulmonary diffusing capacity (D L) measured during exercise. The D L of 24 male endurance athletes was measured using a 3-s breath-hold carbon monoxide procedure (to give D LCO) at rest as well as during cycling at 60% and 90% of these previously determined O2max. Oxyhemoglobin saturation (S aO2%) was monitored throughout both exercise protocols using an Ohmeda Biox II oximeter. Exercise-induced oxyhemoglobin desaturation (DS) (S aO2% < 91% at O2max) was observed in 13 subjects [88.2 (0.6)%] but not in the other 11 nondesaturation subjects [NDS: 92.9 (0.4)%] (P ≤ 0.05), although O2max was not significantly different between the groups [DS: 4.34 (0.65) l / min vs NDS: 4.1 (0.49) l / min]. At rest, no differences in either D LCO [m1 CO · mmHg−1 · min−1: 41.7 (1.7) (DS) vs 41.1 (1.8) (NDS)], D LCO / A [8.2 (0.4) (DS) vs 7.3 (0.9) (NDS)], MVV [l / min: 196.0 (10.4) (DS) vs 182.0 (9.9) (NDS)] or FEV1/FVC [86.3 (2.2) (DS) vs 82.9 (4.7) (NDS)] were found between groups (P ≥ 0.05). However, E /O2 at O2max was lower in the DS group [33.0 (1.1)] compared to the NDS group [36.8 (1.5)] (P ≤ 0.05). Exercise D LCO (m1 CO · mmHg−1 · min−1 ) was not different between groups at either 60% O2max [DS: 55.1 (1.4) vs NDS: 57.2 (2.1)] or at 90% O2max [DS: 61.0 (1.8) vs NDS: 61.4 (2.9)]. A significant relationship (r = 0.698) was calculated to occur between S aO2% and E /O2 during maximal exercise. The present findings indicate that the exercise-induced oxyhemoglobin desaturation seen during submaximal and near-maximal exercise is not related to differences in D L, although during maximal exercise S aO2 may be limited by a relatively lower exercise ventilation. Accepted: 25 September 1996  相似文献   

20.
When aquatically adapted mammals and birds swim submerged, they exhibit a dive response in which breathing ceases, heart rate slows, and blood flow to peripheral tissues and organs is reduced. The most intense dive response occurs during forced submersion which conserves blood oxygen for the brain and heart, thereby preventing asphyxiation. In free-diving animals, the dive response is less profound, and energy metabolism remains aerobic. However, even this relatively moderate bradycardia seems diametrically opposed to the normal cardiovascular response (i.e., tachycardia and peripheral vasodilation) during physical exertion. As a result, there has been a long-standing paradox regarding how aquatic mammals and birds exercise while submerged. We hypothesized based on cardiovascular modeling that heart rate must increase to ensure adequate oxygen delivery to active muscles. Here, we show that heart rate (HR) does indeed increase with flipper or fluke stroke frequency (SF) during voluntary, aerobic dives in Weddell seals (HR?=?1.48SF?-?8.87) and bottlenose dolphins (HR?=?0.99SF?+?2.46), respectively, two marine mammal species with different evolutionary lineages. These results support our hypothesis that marine mammals maintain aerobic muscle metabolism while swimming submerged by combining elements of both dive and exercise responses, with one or the other predominating depending on the level of exertion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号