首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The methionine (Met) cycle contributes to sulfur metabolism through the conversion of methylthioadenosine (MTA) to Met at the expense of ATP. MTA is released as a by-product of ethylene synthesis from S-adenosylmethionine (AdoMet). Disruption of the Met cycle in the Arabidopsis mtk mutant resulted in an imbalance of AdoMet homeostasis at sulfur-limiting conditions, irrespective of the sulfur source supplied to the plants. At a low concentration of 100 mum sulfate, the mtk mutant had reduced AdoMet levels and growth was retarded as compared with wild type. An elevated production of ethylene was measured in seedlings of the ethylene-overproducing eto3 mutant. When Met cycle knockout and ethylene overproduction were combined in the mtk/eto3 double mutant, a reduced capacity for ethylene synthesis was observed in seedlings. Even though mature eto3 plants did not produce elevated ethylene levels, and AdoMet homeostasis in eto3 plants did not differ from that in wild type, shoot growth was severely retarded. The mtk/eto3 double mutant displayed a metabolic plant phenotype that was similar to mtk with reduced AdoMet levels at sulfur-limiting conditions. We conclude from our data that the Met cycle contributes to the maintenance of AdoMet homeostasis, especially when de novo AdoMet synthesis is limited. Our data further showed that the Met cycle is required to sustain high rates of ethylene synthesis. Expression of the Met cycle genes AtMTN1, AtMTN2, AtMTK, AtARD1, AtARD2, AtARD3 and AtARD4 was not regulated by ethylene. This result is in contrast to that found in rice where OsARD1 and OsMTK are induced in response to ethylene. We hypothesize that the regulation of the Met cycle by ethylene may be restricted to plants that naturally produce high quantities of ethylene for a prolonged period of time.  相似文献   

2.
3.
5'-Methylthioadenosine (MTA) is the common by-product of polyamine (PA), nicotianamine (NA), and ethylene biosynthesis in Arabidopsis (Arabidopsis thaliana). The methylthiol moiety of MTA is salvaged by 5'-methylthioadenosine nucleosidase (MTN) in a reaction producing methylthioribose (MTR) and adenine. The MTN double mutant, mtn1-1mtn2-1, retains approximately 14% of the MTN enzyme activity present in the wild type and displays a pleiotropic phenotype that includes altered vasculature and impaired fertility. These abnormal traits were associated with increased MTA levels, altered PA profiles, and reduced NA content. Exogenous feeding of PAs partially recovered fertility, whereas NA supplementation improved fertility and also reversed interveinal chlorosis. The analysis of PA synthase crystal structures containing bound MTA suggests that the corresponding enzyme activities are sensitive to available MTA. Mutant plants that expressed either MTN or human methylthioadenosine phosphorylase (which metabolizes MTA without producing MTR) appeared wild type, proving that the abnormal traits of the mutant are due to MTA accumulation rather than reduced MTR. Based on our results, we propose that the key targets affected by increased MTA content are thermospermine synthase activity and spermidine-dependent posttranslational modification of eukaryotic initiation factor 5A.  相似文献   

4.
The activities of 5'-methylthioadenosine (MTA) nucleosidase (EC 2.2.2.28) and 5-methylthioribose (MTR) kinase (EC 2.7.1.100) were related to changes in ethylene biosynthesis in tomato ( Lycopersicon esculentum Mill. cv. Rutgers) and cucumber ( Cucumis sativus Mill. cv. Poinsett 76) fruit following wounding and chemically induced stresses. Stress ethylene formation in wounded tomato and cucumber tissue continued to increase after wounding, reached its peak by 3h, and then declined. The activities of MTA nucleosidase and MTR kinase increased parallel to stress ethylene in both tissues. At peak ethylene formation, MTA and MTR kinase activities were 2- to 4-fold higher in wounded than in intact tissue. Wounded, mature-green tomato tissue treated with specific inhibitors of MTA nucleosidase and MTR kinase showed a significant reduction in the activities of these enzymes, which was concomitant with a decline in stress ethylene biosynthesis. When mature-green tomato discs were infiltrated with [14CH3] MTA and wounded, radioactive MTR and methionine were formed. Incubation of mature-green tomato discs with Cu2+ and Li+ in the presence of kinetin increased ethylene biosynthesis. MTA nucleosidase activity was higher than that of the control in the presence of Cu2+ but not in the presence of Li+, while MTR kinase activity was lower than that of the control in both Cu2+ and Li+ treatments. Data indicate that MTA nucleosidase and MTR kinase are required for wound-induced ethylene biosynthesis but not for chemical stress-induced ethylene by Cu2+ or Li+ treatments.  相似文献   

5.
Concentrations of polyamines (PA) and the activities of the PA-synthesizing enzymes ornithine decarboxylase (ODC) and arginine decarboxylase (ADC) extracted from the mesocarp tissue of avocado (Persea americana Mill, cv `Simmonds') fruits at different stages of development were compared with DNA content and the activities of 5′-methylthioadenosine (MTA) nucleosidase and 5-methylthioribose (MTR) kinase. Putrescine, spermidine, and spermine were at their peak concentrations during the early stages of fruit development (362, 201, and 165 nanomoles per gram fresh weight, respectively, at 15 days from full bloom), then declined to 30% or less at full maturity. Agmatine showed only a slight change in concentration throughout the fruit development. The activity of ODC, which was low during flowering (8 nmoles per milligram protein per hour), increased more than threefold during the first 2 months then declined at the later stages of fruit development, while ADC activity showed only a slight increase. DNA content followed a similar pattern of change as that of PA and ODC. The decline in DNA and ODC activity suggest a lack of correlation between cell proliferation and PA at the later stages of the avocado fruit development. It is also possible that any cell division which may take place during the latter stages of the fruit development is not sufficient to alter the pattern of PA biosynthesis. MTA nucleosidase and MTR kinase activities increased during the first 15 days of fruit development followed by a slight decline at 60 and 90 days from full bloom. At 120 days (1 month before full maturity) both MTA nucleosidase and MTR kinase activities increased significantly. During maximum ethylene synthesis, MTA nucleosidase and MTR kinase activities were approximately fivefold and eightfold, respectively, higher than during maximum PA synthesis. The data indicate that the MTA molecules produced during PA and ethylene synthesis are actively metabolized to MTR and MTR-1-P, the two intermediates involved in the regeneration of S-adenosylmethionine from MTA. The data also suggest that the PA and ethylene biosynthetic pathways are not actively competing for the same substrates at any given stage of the avocado fruit development and ripening.  相似文献   

6.
《Phytochemistry》1987,26(10):2655-2660
Inhibition of the enzymes involved in the production of 1-aminocyclopropane-1-carboxylic acid (ACC) and the subsequent salvage of methionine from 5′-methylthioadenosine (MTA) was studied. Possible product inhibition of ACC synthase, which converts S-adenosylmethionine (SAM) to ACC and MTA, and MTA nucleosidase, which hydrolyses MTA to 5-methylthioribose (MTR) and adenine, was investigated. ACC synthase was weakly inhibited by MTA (Ki = 0.2mM). MTA nucleosidase was inhibited by adenine competitively (Ki = 40μM), but not by MTR. Some analogues of the enzymes' substrates were inhibitory. ACC synthase was strongly and competitively inhibited by sinefungin, a SAM analogue (Ki = 2μM); MTA nucleosidase was inhibited by various MTA analogues, including 5′-chloroformycin, 5′-chloroadenosine, and 5′-ethylthioadenosine. The conversion of MTR to methionine in avocado extract was inhibited by the MTR analogues 5-chlororibose and 5-ethylthioribose, which exert their inhibitory effects by inhibiting MTR kinase. The capacity to convert MTR to methionine in ripening apple tissue appears to be ample; thus, this conversion does not appear to be a limiting factor of ethylene production.  相似文献   

7.
Brassinosteroids (BRs) are endogenous plant hormones essential for plant growth and development. Brassinosteroid insensitive1 (BRI1)-assocaiated receptor kinase (BAK1) is one of the key components in the BR signal transduction pathway due to its direct association with the BR receptor, BRI1. Although BRI1 and its orthologs have been identified from both dicotyledonous and monocotyledonous plants, less is known about BAK1 and its orthologs in higher plants other than Arabidopsis. This article provides the first piece of evidence that AtBAK1 can greatly affect growth and development of rice plants when ectopically expressed, suggesting that rice may share similar BR perception mechanism via BRI1/BAK1 complex. Interestingly, transgenic rice plants displayed semi-dwarfism and shortened primary roots. Physiological analysis and cell morphology assay demonstrated that the observed phenotypes in transgenic plants were presumably caused by hypersensitivity to endogenous levels of BRs, different from BR insensitive and deficient rice mutants. Consistently, several known BR inducible genes were also upregulated in transgenic rice plants, further suggesting that BAK1 was able to affect BR signaling in rice. On the other hand, the transgenic plants generated by overproducing AtBAK1 may potentially have agricultural applications because the dwarfed phenotype is generally resistant to lodging, while the fertility remains unaffected.  相似文献   

8.
9.
Large numbers of expressed sequence tags (ESTs) have now been generated from a variety of model organisms. In plants, substantial collections of ESTs are available for Arabidopsis and rice, in each case representing significant proportions of the estimated total numbers of genes. Large-scale comparisons of Arabidopsis and rice sequences are especially interesting due to the fact that these two species are representatives of the two subclasses of the flowering plants (Dicotyledonae and Monocotyledonae, respectively). Here we present the results of systematic analysis of the Arabidopsis and rice EST sets. Non-redundant sets of sequences from Arabidopsis and rice were first separately derived and then combined so that gene families in common between the two species could be identified. Our results show that 58% of non-singleton ESTs are derived from genes in gene families common to the two species. These gene families constitute the basis of a core set of higher plant genes.  相似文献   

10.
5′-Methylthioadenosine (MTA) nucleosidase and 5-methylthioribose (MTR) kinase activities were measured in crude extracts of tomato fruits (Lycopersicon esculentum Mill cv Rutgers) during fruit development and ripening. The highest activity of MTA nucleosidase (1.2 nanomoles per milligram protein per minute) was observed in small green fruits. The activity decreased during ripening; at the overripe stage only 6.5% of the peak activity remained. MTR kinase activity was low at the small green stage and increased thereafter until it reached peak activity at the breaker stage (0.7 nanomoles per milligram protein per minute) followed by a sharp decline at the later stages of fruit ripening. 1-Amino-cyclopropane-1-carboxylic acid (ACC) levels peaked at the red stage, while ethylene reached its highest level at the light-red stage. Several analogs of MTA and MTR were tested as both enzyme and ethylene inhibitors. Of the MTA analogs examined for their ability to inhibit MTA nucleosidase, 5′-chloroformycin reduced enzyme activity 89%, whereas 5′-chloroadenosine, 5′-isobutylthioadenosine, 5′-isopropylthioadenosine, and 5′-ethylthioadenosine inhibited the reaction with MTA by about 40%. 5′-Chloroformycin and 5′-chloroadenosine inhibited ethylene production over a period of 24 hours by about 64 and 42%, respectively. Other analogs of MTA were not effective inhibitors of ethylene production, whereas aminoethoxyvinylglycine showed a 34% inhibition over the same period of time. Of the MTR analogs tested, 5-isobutylthioribose was the most effective inhibitor of both MTR-kinase (41%) and ethylene production (35%).  相似文献   

11.
Oh SJ  Song SI  Kim YS  Jang HJ  Kim SY  Kim M  Kim YK  Nahm BH  Kim JK 《Plant physiology》2005,138(1):341-351
Rice (Oryza sativa), a monocotyledonous plant that does not cold acclimate, has evolved differently from Arabidopsis (Arabidopsis thaliana), which cold acclimates. To understand the stress response of rice in comparison with that of Arabidopsis, we developed transgenic rice plants that constitutively expressed CBF3/DREB1A (CBF3) and ABF3, Arabidopsis genes that function in abscisic acid-independent and abscisic acid-dependent stress-response pathways, respectively. CBF3 in transgenic rice elevated tolerance to drought and high salinity, and produced relatively low levels of tolerance to low-temperature exposure. These data were in direct contrast to CBF3 in Arabidopsis, which is known to function primarily to enhance freezing tolerance. ABF3 in transgenic rice increased tolerance to drought stress alone. By using the 60 K Rice Whole Genome Microarray and RNA gel-blot analyses, we identified 12 and 7 target genes that were activated in transgenic rice plants by CBF3 and ABF3, respectively, which appear to render the corresponding plants acclimated for stress conditions. The target genes together with 13 and 27 additional genes are induced further upon exposure to drought stress, consequently making the transgenic plants more tolerant to stress conditions. Interestingly, our transgenic plants exhibited neither growth inhibition nor visible phenotypic alterations despite constitutive expression of the CBF3 or ABF3, unlike the results previously obtained from Arabidopsis where transgenic plants were stunted.  相似文献   

12.
赤霉素(gibberellin,GA)是一类非常重要的植物激素,在植物种子萌发、茎干伸长、叶片生长、腺毛发育、花粉成熟、开花诱导和果实成熟等生长发育过程中都发挥着重要的作用。GA在一年生草本植物中可以促进开花,而在大多数多年生木本植物中则抑制成花诱导。为了更好地研究赤霉素在木本油料能源植物小桐子(Jatropha curcas)开花调控方面的作用机理,我们对小桐子整个基因组中参与GA合成代谢和信号转导的全部基因进行了鉴定和序列分析。这些基因包括6个多基因家族编码的蛋白,即GA2氧化酶(GA2-oxidase,GA2ox)、GA3氧化酶(GA3-oxidase,GA3ox)、GA20氧化酶(GA20-oxidase,GA20ox)、GID1(GIBBERELLIN INSENSITIVE DWARF1)、DELLAs和F-box蛋白,以及2个单基因编码的蛋白,EL1(EARLY FLOWERING1)和SPY(SPINDLY)。采用拟南芥和水稻中已经鉴定的上述基因编码的蛋白序列在小桐子基因组序列数据库和本实验的小桐子转录组数据库中进行BLASTP分析,找到17个同源蛋白的全长序列,并将其与28个拟南芥的、16个水稻的、24个葡萄的和22个蓖麻的同源蛋白构建系统发育树进行比对分析。结果表明,小桐子中参与赤霉素合成代谢及信号转导的大多数基因与蓖麻和葡萄同源基因的相似度更高。  相似文献   

13.
14.
Cyclins, cyclin-dependent kinases, and a number of other proteins control the progression of plant cell cycle. Although extensive studies have revealed the roles of some cell cycle regulators and the underlying mechanisms in Arabidopsis, relatively a small number of cell cycle regulators were functionally analyzed in rice. In this study, we describe 41 regulators in the rice genome. Our results indicate that the rice genome contains a less number of the core cell cycle regulators than the Arabidopsis one does, although the rice genome is much larger than the Arabidopsis one. Eight groups of CDKs similar to those in Arabidopsis were identified in the rice genome through phylogenetic analysis, and the corresponding members in the different groups include E2F, CKI, Rb, CKS and Wee. The structures of the core cell regulators were relatively conserved between the rice and Arabidopsis genomes. Furthermore, the expression of the majority of the core cell cycle genes was spatially regulated, and the most closely related ones showed very similar patterns of expression, suggesting functional redundancy and conservation between the highly similar core cell cycle genes in rice and Arabidopsis. Following auxin or cytokinin treatment, the expression of the core cell cycle genes was either upregulated or downregulated, suggesting that auxin and/or cytokinin may directly regulate the expression of the core cell cycle genes. Our results provide basic information to understand the mechanism of cell cycle regulation and the functions of the rice cell cycle genes. Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users. Jing Guo and Jian Song have contributed equally.  相似文献   

15.
Plants contain more genes encoding core cell cycle regulators than other organisms but it is unclear whether these represent distinct functions. D-type cyclins (CYCD) play key roles in the G1-to-S-phase transition, and Arabidopsis (Arabidopsis thaliana) contains 10 CYCD genes in seven defined subgroups, six of which are conserved in rice (Oryza sativa). Here, we identify 22 CYCD genes in the poplar (Populus trichocarpa) genome and confirm that these six CYCD subgroups are conserved across higher plants, suggesting subgroup-specific functions. Different subgroups show gene number increases, with CYCD3 having three members in Arabidopsis, six in poplar, and a single representative in rice. All three species contain a single CYCD7 gene. Despite low overall sequence homology, we find remarkable conservation of intron/exon boundaries, because in most CYCD genes of plants and mammals, the first exon ends in the conserved cyclin signature. Only CYCD3 genes contain the complete cyclin box in a single exon, and this structure is conserved across angiosperms, again suggesting an early origin for the subgroup. The single CYCD gene of moss has a gene structure closely related to those of higher plants, sharing an identical exon/intron structure with several higher plant subgroups. However, green algae have CYCD genes structurally unrelated to higher plants. Conservation is also observed in the location of potential cyclin-dependent kinase phosphorylation sites within CYCD proteins. Subgroup structure is supported by conserved regulatory elements, particularly in the eudicot species, including conserved E2F regulatory sites within CYCD3 promoters. Global expression correlation analysis further supports distinct expression patterns for CYCD subgroups.  相似文献   

16.
Genomic imprinting causes the expression of an allele depending on its parental origin. In plants, most imprinted genes have been identified in Arabidopsis endosperm, a transient structure consumed by the embryo during seed formation. We identified imprinted genes in rice seed where both the endosperm and embryo are present at seed maturity. RNA was extracted from embryos and endosperm of seeds obtained from reciprocal crosses between two subspecies Nipponbare (Japonica rice) and 93-11 (Indica rice). Sequenced reads from cDNA libraries were aligned to their respective parental genomes using single-nucleotide polymorphisms (SNPs). Reads across SNPs enabled derivation of parental expression bias ratios. A continuum of parental expression bias states was observed. Statistical analyses indicated 262 candidate imprinted loci in the endosperm and three in the embryo (168 genic and 97 non-genic). Fifty-six of the 67 loci investigated were confirmed to be imprinted in the seed. Imprinted loci are not clustered in the rice genome as found in mammals. All of these imprinted loci were expressed in the endosperm, and one of these was also imprinted in the embryo, confirming that in both rice and Arabidopsis imprinted expression is primarily confined to the endosperm. Some rice imprinted genes were also expressed in vegetative tissues, indicating that they have additional roles in plant growth. Comparison of candidate imprinted genes found in rice with imprinted candidate loci obtained from genome-wide surveys of imprinted genes in Arabidopsis to date shows a low degree of conservation, suggesting that imprinting has evolved independently in eudicots and monocots.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号