首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We establish the existence of travelling wave solutions for two reaction diffusion systems based on the Lotka-Volterra model for predator and prey interactions. For simplicity, we consider only 1 space dimension. The waves are of transition front type, analogous to the travelling wave solutions discussed by Fisher and Kolmogorov et al. for a scalar reaction diffusion equation. The waves discussed here are not necessarily monotone. For any speed c there is a travelling wave solution of transition front type. For one of the systems discussed here, there is a distinguished speed c* dividing the waves into two types, waves of speed c < c* being one type, waves of speed c ? c* being of the other type. We present numerical evidence that for this system the wave of speed c* is stable, and that c* is an asymptotic speed of propagation in some sense. For the other system, waves of all speeds are in some sense stable. The proof of existence uses a shooting argument and a Lyapunov function. We also discuss some possible biological implications of the existence of these waves.  相似文献   

2.
A spatially discrete version of the diffusive Lotka-Volterra equations is considered. Asymptotical spatial homogeneity of solutions of the equations with equilibrium, periodic or zero flux boundary conditions is proved without regard to crowding effects. The proof does not require the assumption of equal diffusion coefficients and the restrictions on the dimension of space and on the initial data, which are necessary in the spatially continuous model.  相似文献   

3.
Periodic Lotka-Volterra competition equations   总被引:2,自引:1,他引:2  
The Lotka-Volterra competition equations with periodic coefficients derived from the MacArthur-Levins theory of a one-dimensional resource niche are studied when the parameters are allowed to oscillate periodically in time. Specifically, niche positions and widths, resource availability and resource consumption rates are allowed small amplitude periodicities around a specified mean value. Two opposite cases are studied both analytically and numerically. First only resource consumption rates are allowed to oscillate while niche dimensions and resource availability are held constant. The resulting oscillations in population densities and the strength of the system stability as they depend upon crucial relative phase and amplitude differences between the species' consumption rates are studied. This leads to a clear notion of "temporal niche" and of the effects that such oscillations can have on competitive coexistence. Secondly, all system parameters are allowed to oscillate, although the oscillatory consumption rates are assumed identical for both species. The effects on the population density oscillations and their averages are studied and the "best" choice of the common, periodic resource consumption rate for these two "identical" species competing for similar (even identical) niches is considered.  相似文献   

4.
The exact general solution is obtained to a linear second order ordinary differential equation which has quite general coefficients depending on an arbitrary function of the independent variable. From this, the exact fundamental solution is derived for the corresponding linear parabolic partial differential equation with coefficients depending on the single space coordinate. In a special case this latter equation reduces to one of the Fokker-Planck type. These coefficients are then generalised and the appropriate fundamental solution is obtained. Extensions are given to linear parabolic equations in two andn space dimensions. The paper provides a collection of basic examples which illustrate and develop the theory for the generation of the exact fundamental solutions. Reduction to, and the corresponding fundamental solutions of the Fokker-Planck equations is presented, where appropriate.  相似文献   

5.
The economics commonly credited with the introduction of the Lotka-Volterra equations into economics to examine cyclical problems is Richard Goodwin (1965). In this paper we show that the Italian economist Giuseppe Palomba had used these equationsmuch earlier (1939), and describe Palomba’s model in detail, pointing out his surprisinglymodern conclusions and suggestions for future work.   相似文献   

6.
While there are many mechanisms that may be involved in the regulation of body mass in humans and other animals, it is not so clear how much regulation is needed beyond the negative feedback effect of body mass itself. Here we model weight changes as a stochastic process, and show that it behaves approximately as an autoregressive process. Using published estimates of the energy cost of weight gain, the effect of weight on resting metabolic rate and the daily variation in intake and activity, we show that fluctuations in weight will be small. The effect of excess intake is also examined, and the assumptions and limitations of the model are discussed.  相似文献   

7.
Summary The major objective of this paper is to propose a new decomposition-aggregation framework for stability analysis of Lotka-Volterra equations employing the concept of vector Liapunov functions. Both the disjoint and the overlapping decompositions are introduced to increase flexibility in constructing Liapunov functions for the overall system. Our second objective is to consider the Lotka-Volterra equations under structural perturbations, and derive conditions under which a positive equilibrium is connectively stable. Both objectives of this paper are directed towards a better understanding of the intricate interplay between stability and complexity in the context of robustness of model ecosystems represented by Lotka-Volterra equations. Only stability of equilibria in models with constant parameters is considered here. Nonequilibrium analysis of models with nonlinear time-varying parameters is the subject of a companion paper.Research supported by U.S. Department of Energy under the Contract EC-77-S-03-1493.On leave from Kobe University, Kobe, Japan.  相似文献   

8.
The question of the long term survival of species in models governed by Lotka-Volterra difference equations is considered. The criterion used is the biologically realistic one of permanence, that is populations with all initial values positive must eventually all become greater than some fixed positive number. We show that in spite of the complex dynamics associated even with the simplest of such systems, it is possible to obtain readily applicable criteria for permanence in a wide range of cases.  相似文献   

9.
《Mathematical biosciences》1986,81(2):191-212
Bifurcation phenomena appearing in the Lotka-Volterra competition equations with periodically varying coefficients are studied numerically. We assume sinusoidal oscillations of the coefficients and use phase differences between them as free parameters. We are mainly concerned with the case where a pair of stable and unstable positive periodic solutions exists, although one of the trivial periodic solutions is stable and the other is unstable. We obtain a very curious bifurcation diagram in which two branches of stable and unstable positive periodic solutions are connected at both ends, but are connected with no other branches. We show how this unusual diagram can be viewed as a cross-section of a multidimensional bifurcation diagram. The region in a 3-dimensional parameter space where a pair of stable and unstable positive periodic solutions exists is shown in an example, and the ecological meaning of the phase differences necessary for stable coexistence of two species is considered. Finally, a bifurcation problem with the average intrinsic growth rate as a parameter is also dealt with numerically, in relation with Cushing's result.  相似文献   

10.
In this article we study the inverse problem of finding coefficients of Lotka-Volterra equations from one given solution. The conditions of existence and uniqueness of the inverse problem are found.  相似文献   

11.
Rustamov NA 《Biofizika》2000,45(4):700-703
An approach is offered to construct the asymptomatics of the solutions on the small parameter in the close neighborhood of the equilibrium condition of the well-known Volterra-Lotka "prey-predator" system and one of its modifications which takes into account the intraspecies competition of preys and limitation of food resources of a predator. On the basis of the formulas obtained, possible dynamic modes of the size of populations of both kinds are analyzed.  相似文献   

12.
本文根据营养动力学理论,建立了一类种间竞争的新的数学模型:它是单种群增长的Cui-Lawson模型,在种间竞争上的推广。新的种间竞争模型克服了经典的种间竞争的Lotka-Volteira方程的局限与不足,具有更广泛和复杂的行为,并在特殊条件下以Lotka-Volterra竞争方程为其特例。因此,新的种间竞争的数学模型是更一般的解释性模型,是对经典的Lotka-Voterra竞争方程的扩充。  相似文献   

13.
Periodic solutions to nonautonomous difference equations   总被引:1,自引:0,他引:1  
A technique is presented for determining when periodic solutions to nonautonomous periodic difference equations exist. Under certain constraints, stable periodic solutions can be guaranteed to exist, and this is used to compare the analogous behavior of a nonautonomous periodic hyperbolic difference equation to that of the nonautonomous periodic Pearl-Verhulst logistic differential equation.  相似文献   

14.
B and Mast cells are activated by the aggregation of the immune receptors. Motivated by this phenomena we consider a simple spatially extended model of mutual interaction of kinases and membrane receptors. It is assumed that kinase activates membrane receptors and in turn the kinase molecules bound to the active receptors are activated by transphosphorylation. Such a type of interaction implies positive feedback and may lead to bistability. In this study we apply the Steklov eigenproblem theory to analyze the linearized model and find exact solutions in the case of non-uniformly distributed membrane receptors. This approach allows us to determine the critical value of receptor dephosphorylation rate at which cell activation (by arbitrary small perturbation of the inactive state) is possible. We found that cell sensitivity grows with decreasing kinase diffusion and increasing anisotropy of the receptor distribution. Moreover, these two effects are cooperating. We showed that the cell activity can be abruptly triggered by the formation of the receptor aggregate. Since the considered activation mechanism is not based on receptor crosslinking by polyvalent antigens, the proposed model can also explain B cell activation due to receptor aggregation following binding of monovalent antigens presented on the antigen presenting cell.  相似文献   

15.
Periodic solutions of the current clamped Hodgkin-Huxley equations (Hodgkin & Huxley, 1952 J. Physiol. 117, 500) that arise by degenerate Hopf bifurcation were studied recently by Labouriau (1985 SIAM J. Math. Anal. 16, 1121, 1987 Degenerate Hopf Bifurcation and Nerve Impulse (Part II), in press). Two parameters, temperature T and sodium conductance gNa were varied from the original values obtained by Hodgkin & Huxley. Labouriau's work proved the existence of small amplitude periodic solution branches that do not connect locally to the stationary solution branch, and had not been previously computed. In this paper we compute these solution branches globally. We find families of isolas of periodic solutions (i.e. branches not connected to the stationary branch). For values of gNa in the range measured by Hodgkin & Huxley, and for physically reasonable temperatures, there are isolas containing orbitally asymptotically stable solutions. The presence of isolas of periodic solutions suggests that in certain current space clamped membrane experiments, action potentials could be observed even though the stationary state is stable for all current stimuli. Once produced, such action potentials will disappear suddenly if the current stimulus is either increased or decreased past certain values. Under some conditions, "jumping" between action potentials of different amplitudes might be observed.  相似文献   

16.
Exact solutions for the two-species Volterra prey-predator equations and for the Volterra equations for competition are obtained in the special case that the rate of increase of both species in the absence of interaction is the same.  相似文献   

17.
New methods for determining chemical structures from residual dipolar couplings are presented. The fundamental dipolar coupling equation is converted to an elliptical equation in the principal alignment frame. This elliptical equation is then combined with other angular or dipolar coupling constraints to form simple polynomial equations that define discrete solutions for the unit vector(s). The methods are illustrated with residual dipolar coupling data on ubiquitin taken in a single anisotropic medium. The protein backbone is divided into its rigid groups (namely, its peptide planes and C frames), which may be solved for independently. A simple procedure for recombining these independent solutions results in backbone dihedral angles and that resemble those of the known native structure. Subsequent refinement of these - angles by the ROSETTA program produces a structure of ubiquitin that agrees with the known native structure to 1.1 Å C rmsd.  相似文献   

18.
19.
Solute-solvent transmembrane flux models are used throughout biological sciences with applications in plant biology, cryobiology (transplantation and transfusion medicine), as well as circulatory and kidney physiology. Using a standard two parameter differential equation model of solute and solvent transmembrane flux described by Jacobs [The simultaneous measurement of cell permeability to water and to dissolved substances, J. Cell. Comp. Physiol. 2 (1932) 427-444], we determine the functions that describe the intracellular water volume and moles of intracellular solute for every time t and every set of initial conditions. Here, we provide several novel biophysical applications of this theory to important biological problems. These include using this result to calculate the value of cell volume excursion maxima and minima along with the time at which they occur, a novel result that is of significant relevance to the addition and removal of permeating solutes during cryopreservation. We also present a methodology that produces extremely accurate sum of squares estimates when fitting data for cellular permeability parameter values. Finally, we show that this theory allows a significant increase in both accuracy and speed of finite element methods for multicellular volume simulations, which has critical clinical biophysical applications in cryosurgical approaches to cancer treatment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号