首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparison of the kinetic profiles of copper-induced peroxidation of HDL and LDL at different copper concentrations reveals that under all the studied experimental conditions HDL is more susceptible to oxidation than LDL. The mechanism responsible for HDL oxidation is a complex function of the copper/HDL ratio and of the tocopherol content of the HDL. At high copper concentrations, the kinetic profiles were similar to those observed for LDL oxidation, namely, relatively rapid accumulation of oxidation products, via an autoaccelerated, noninhibited mechanism, was preceded by an initial "lag phase." Under these conditions, the maximal peroxidation rate (V(max)) of HDL and LDL depended similarly on the molar ratio of bound copper/lipoprotein. Analysis of this dependency in terms of the binding characteristics of copper to lipoprotein, yielded similar dissociation constant (K = 10(-6) M) but different maximal binding capacities for the two lipoproteins (8 Cu(+2)/HDL as compared to 17 Cu(+2)/LDL). Given the size difference between HDL and LDL, these results imply that the maximal surface density of bound copper is at least 2-fold higher for HDL than for LDL. This difference may be responsible for the higher susceptibility of HDL to copper-induced oxidation in the presence of high copper concentrations. At relatively low copper concentrations, the kinetic profile of HDL oxidation was biphasic, similar to but more pronounced than the biphasic kinetics observed for the oxidation of LDL lipids at the same concentration of copper. Our results are consistent with the hypothesis that the first phase of rapid oxidation occurs via a tocopherol-mediated-peroxidation (TMP) mechanism. Accordingly, enrichment of HDL with tocopherol resulted in enhanced accumulation of hydroperoxides during the first phase of copper-induced oxidation. Notably, the maximal accumulation during the first phase decreased upon increasing the ratio of bound copper/HDL. This behavior can be predicted theoretically for peroxidation via a TMP mechanism, in opposition to autoaccelerated peroxidation. The possible pathophysiological significance of these findings is discussed.  相似文献   

2.
The oxidation of low-density lipoproteins is the first step in the complex process leading to atherosclerosis. The aim of our study was to compare the kinetics of low density lipoprotein oxidation induced by copper ions or by oxygen free radicals generated by 60Co gamma-rays. The effects of copper concentration and irradiation dose-rate on LDL peroxidation kinetics were also studied. The oxidation of LDL was followed by the measurement of conjugated diene, hydroperoxides, and thiobarbituric acid reactive substance formation as well as alpha-tocopherol disappearance. In the case of gamma irradiation, the lag-phase before the onset of lipid peroxidation was inversely correlated to the radiation dose-rate. The radiation chemical rates (nu) increased with increasing dose-rate. Copper-induced LDL peroxidation followed two kinetic patterns: a slow kinetic for copper concentrations between 5-20 microM, and a fast kinetic for a copper concentration of 40 microM. The concentration-dependent oxidation kinetics suggest the existence of a saturable copper binding site on apo-B. When compared with gamma-rays, copper ions act as drastic and powerful oxidants only at higher concentrations (> or = 40 microM).  相似文献   

3.
Faure P  Oziol L  Artur Y  Chomard P 《Biochimie》2004,86(6):411-418
Triiodothyronine (T3) and triiodothyroacetic acid (TA3) are thyroid compounds that similarly protect low-density lipoprotein (LDL) against oxidation induced by the free radical generator 2,2'-azobis-[2-amidinopropane] dihydrochloride (AAPH). However, TA3 is more antioxidant than T3 on LDL oxidation induced by copper ions (Cu2+), suggesting that these compounds act by different mechanisms. Here we measured conjugated diene production kinetics during in vitro human LDL (50 mg LDL-protein per l) oxidation induced by various Cu2+ (0.5-4 microM) or AAPH (0.25-2 mM) concentrations in the presence of T3, TA3, butylated hydroxytoluene (BHT) (a free radical scavenger) or ethylenediaminetetracetic acid (EDTA) (a metal chelator). From the kinetics were estimated: length of the lag phase (Tlag), maximum velocity of conjugated diene production (Vmax), and maximum amount of generated dienes (Dmax). Thyroid compound effects on these oxidation parameters were compared to those of the controls BHT and EDTA. In addition we measured by atomic absorption spectrometry copper remaining in LDL after a 30 min incubation of LDL with Cu2+ and the compounds followed by extensive dialysis, i.e. copper bound to LDL. As expected, LDL-copper was decreased by EDTA in a concentration-dependent manner, whereas it was not affected by BHT. T3 increased LDL-copper whereas TA3 slightly decreased it. The whole data suggest that T3 and TA3 are free radical scavengers that also differently disturb LDL-copper binding, an essential step for LDL lipid peroxidation. The most likely mechanisms are that T3 induces new copper binding sites inside the LDL particle, increasing the LDL-copper amount but in a redox-inactive form, whereas TA3 blocks some redox-active copper binding sites highly implicated in the initiation and the propagation of lipid peroxidation. Alternatively, we also found that a little amount of copper is tightly bound in LDL, which may be essential for the propagation of lipid peroxidation induced by free radical generators.  相似文献   

4.
To investigate whether resveratrol, a polyphenolic compound in red wine, affects the oxidation of human low density lipoprotein (LDL), LDL purified from normolipidemic subjects was subjected to Cu(2+)-induce and azo compound-initiated oxidative modification, with and without the addition of varying concentrations of resveratrol. Modification of LDL was assessed by the formation of thiobarbituric acid reactive substances (TBARS) and changes in the relative electrophoretic mobility (REM) of LDL on agarose gels. Resveratrol (50 microM) reduced TBARS and REM of LDL during Cu(2+)-induced oxidation by 70.5% and 42.3%, respectively (p < 0.01), and prolonged the lag phase associated with the oxidative modification of LDL by copper ion or azo compound. These in vitro results suggest that resveratrol may afford protection of LDL against oxidative damage resulting from exposure to various environmental challenges, possibly by acting as a free radical scavenger.  相似文献   

5.
In view of the proposed central role of LDL oxidation in atherogenesis and the established role of HDL in reducing the risk of atherosclerosis, several studies were undertaken to investigate the possible effect of HDL on LDL peroxidation. Since these investigations yielded contradictory results, we have conducted systematic kinetic studies on the oxidation in mixtures of HDL and LDL induced by different concentrations of copper, 2, 2'-azo bis (2-amidinopropane) hydrochloride (AAPH) and myeloperoxidase (MPO). These studies revealed that oxidation of LDL induced either by AAPH or MPO is inhibited by HDL under all the studied conditions, whereas copper-induced oxidation of LDL is inhibited by HDL at low copper/lipoprotein ratio but accelerated by HDL at high copper/lipoprotein ratio. The antioxidative effects of HDL are only partially due to HDL-associated enzymes, as indicated by the finding that reconstituted HDL, containing no such enzymes, inhibits peroxidation induced by low copper concentration. Reduction of the binding of copper to LDL by competitive binding to the HDL also contributes to the antioxidative effect of HDL. The acceleration of copper-induced oxidation of LDL by HDL may be attributed to the hydroperoxides formed in the "more oxidizable" HDL, which migrate to the "less oxidizable" LDL and enhance the oxidation of the LDL lipids induced by bound copper. This hypothesis is supported by the results of experiments in which native LDL was added to oxidizing lipoprotein at different time points. When the native LDL was added prior to decomposition of the hydroperoxides in the oxidizing lipoprotein, the lag preceding oxidation of the LDL was much shorter than the lag observed when the native LDL was added at latter stages, after the level of hydroperoxides became reduced due to their copper-catalyzed decomposition. The observed dependence of the interrelationship between the oxidation of HDL and LDL on the oxidative stress should be considered in future investigations regarding the oxidation of lipoprotein mixtures.  相似文献   

6.
In an attempt to deepen our understanding of the mechanisms responsible for lipoprotein peroxidation, we have studied the kinetics of copper-induced peroxidation of the polyunsaturated fatty acid residues in model membranes (small, unilamellar liposomes) composed of palmitoyllinoleoylphosphatidylcholine (PLPC). Liposomes were prepared by sonication and exposed to CuCl(2) in the absence or presence of naturally occurring reductants (ascorbic acid (AA) and/or alpha-tocopherol (Toc)) and/or a Cu(I) chelator (bathocuproinedisulfonic acid (BC) or neocuproine (NC)). The resultant oxidation process was monitored by recording the time-dependence of the absorbance at several wavelengths. The observed results reveal that copper-induced peroxidation of PLPC is very slow even at relatively high copper concentrations, but occurs rapidly in the presence of ascorbate, even at sub-micromolar copper concentrations. When added from an ethanolic solution, tocopherol had similar pro-oxidative effects, whereas when introduced into the liposomes by co-sonication tocopherol exhibited a marked antioxidative effect. Under the latter conditions, ascorbate inhibited peroxidation of the tocopherol-containing bilayers possibly by regeneration of tocopherol. Similarly, both ascorbate and tocopherol exhibit antioxidative potency when the PLPC liposomes are exposed to the high oxidative stress imposed by chelated copper, which is more redox-active than free copper. The biological significance of these results has yet to be evaluated.  相似文献   

7.
The seasonal variation of CuCl2-mediated low density lipoprotein (LDL) oxidation (10 microM Cu2+, lag phase, rate of oxidation and maximum absorbance at 234 nm) were measured in 43 men and women on 4-6 occasions (mean 5.7 +/- 0.5) over a 12-month period. The lag phase averaged 52.7 +/- 0.6 min and did not differ by gender. Lag phase and rate of the rapid propagation phase of LDL oxidation showed a sinusoidal pattern over the year (increased and reduced oxidative susceptibility during January and June-July, respectively; both p < 0.001). Changes in plasma alpha-tocopherol, ascorbic acid, lycopene or beta-carotene concentrations did not explain seasonal differences in oxidative susceptibility of LDL in vitro. Nor did plasma lipid content of linoleic acid, the main substrate of lipid peroxidation, vary. However, the amount of hydroperoxy- plus hydroxy-fatty acids in plasma lipids varied according to season (p < 0.024) and was related to the lag phase (r = -0.26, p < 0.001). Seasonal variation in oxidative susceptibility was not significant after adjusting for hydroperoxy- plus hydroxy-fatty acids (p = 0.506). Isolated LDL is more vulnerable to Cu2+-induced lipid peroxidation during the winter and this may be due to the higher amount of oxidised lipids during that period.  相似文献   

8.
We reported earlier that urate may behave as a pro-oxidant in Cu2+-induced oxidation of diluted plasma. Thus, its effect on Cu2+-induced oxidation of isolated low-density lipoprotein (LDL) was investigated by monitoring the formation of malondialdehyde and conjugated dienes and the consumption of urate and carotenoids. We show that urate is antioxidant at high concentration but pro-oxidant at low concentration. Depending on Cu2+ concentration, the switch between the pro- and antioxidant behavior of urate occurs at different urate concentrations. At high Cu2+ concentration, in the presence of urate, superoxide dismutase and ferricytochrome c protect LDL from oxidation but no protection is observed at low Cu2+ concentration. The use of Cu2+ or Cu+ chelators demonstrates that both copper redox states are required. We suggest that two mechanisms occur depending on the Cu2+ concentration. Urate may reduce Cu2+ to Cu+, which in turn contributes to formation. The Cu2+ reduction is likely to produce the urate radical (UH.-). It is proposed that at high Cu2+ concentration, the reaction of UH.- radical with generates products or intermediates, which trigger LDL oxidation. At low Cu2+ concentration, we suggest that the Cu+ ions formed reduce lipid hydroperoxides to alkoxyl radicals, thereby facilitating the peroxidizing chain reaction. It is anticipated that these two mechanisms are the consequence of complex LDL-urate-Cu2+ interactions. It is also shown that urate is pro-oxidant towards slightly preoxidized LDL, whatever its concentration. We reiterate the conclusion that the use of antioxidants may be a two-edged sword.  相似文献   

9.
Chain-breaking antioxidants such as butylated hydroxytoluene, alpha-tocopherol, and probucol have been shown to decrease markedly the oxidative modification of low density lipoprotein (LDL). Their mechanism of action appears to involve scavenging of LDL-lipid peroxyl radicals. The purpose of this study was to investigate the occurrence of radical reactions produced during oxidation of LDL and LDL-containing probucol initiated by lipoxygenase or copper. In addition, we have investigated the possibility of a synergistic interaction between ascorbate and probucol in inhibiting the oxidation of LDL. Incubation of LDL-containing probucol and lipoxygenase produced a composite electron spin resonance (ESR) spectrum due to the endogenous alpha-tocopheroxyl radical and probucol-derived phenoxyl radical. The spectral assignment was further verified by chemical oxidation of alpha-tocopherol and probucol. In the presence of ascorbic acid, these radicals in the LDL particle were reduced to their parent compounds with concomitant formation of the ascorbate radical. In both the peroxidation of linoleic acid and the copper-initiated peroxidation of LDL, the antioxidant activity of probucol was significantly increased by low (3-6 microM) concentrations of ascorbate. The probucol-dependent inhibition of LDL oxidation was enhanced in the presence of ascorbic acid. We conclude that the reaction between the phenoxyl radical of probucol and ascorbate results in a synergistic enhancement of the antioxidant capacity of these two compounds and speculate that such reactions could play a role in maintaining the antioxidant status of LDL during oxidative stress in vivo.  相似文献   

10.
Oxidation of low-density lipoprotein (LDL) is thought to be a major factor in the pathophysiology of atherosclerosis. Elevated plasma homocysteine is an accepted risk factor for atherosclerosis, and may act through LDL oxidation, although this is controversial. In this study, homocysteine at physiological concentrations is shown to act as a pro-oxidant for three stages of copper-mediated LDL oxidation (initiation, conjugated diene formation and aldehyde formation), whereas at high concentration, it acts as an antioxidant. The affinity for copper of homocysteine and related copper ligands homocysteine, cystathionine and djenkolate was measured, showing that at high concentrations (100 microM) under our assay conditions, they bind essentially all of the copper present. This is used to rationalise the behaviour of these ligands, which stimulate LDL oxidation at low concentration but generally inhibit it at high concentration. Albumin strongly reduced the effect of homocystine on lag time for LDL oxidation, suggesting that the effects of homocystine are due to copper binding. In contrast, copper binding does not fully explain the pro-oxidant behaviour of low concentrations of homocysteine towards LDL, which appears in part at least to be due to stimulation of free radical production. The likely role of homocysteine in LDL oxidation in vivo is discussed in the light of these results.  相似文献   

11.
The mechanisms by which low-density lipoprotein (LDL) particles undergo oxidative modification to an atherogenic form that is taken up by the macrophage scavenger-receptor pathway have been the subject of extensive research for almost two decades. The most common method for the initiation of LDL oxidation in vitro involves incubation with Cu(II) ions. Although various mechanisms have been proposed to explain the ability of Cu(II) to promote LDL modification, the precise reactions involved in initiating the process remain a matter of contention in the literature. This review provides a critical overview and evaluation of the current theories describing the interactions of copper with the LDL particle. Following discussion of the thermodynamics of reactions dependent upon the decomposition of preexisting lipid hydroperoxides, which are present in all crude LDL preparations, attention is turned to the more difficult (but perhaps more physiologically-relevant) system of the hydroperoxide-free LDL particle. In both systems, the key role of alpha-tocopherol is discussed. In addition to its protective, radical-scavenging action, alpha-tocopherol can also behave as a prooxidant via its reduction of Cu(II) to Cu(I). Generation of Cu(I) greatly facilitates the decomposition of lipid hydroperoxides to chain-carrying radicals, but the mechanisms by which the vitamin promotes LDL oxidation in the absence of preformed hydroperoxides remain more speculative. In addition to the so-called tocopherol-mediated peroxidation model, in which polyunsaturated fatty acid oxidation is initiated by the alpha-tocopheroxyl radical (generated during the reduction of Cu(II) by alpha-tocopherol), an evaluation of the role of the hydroxyl radical is provided. Important interactions between copper ions and thiols are also discussed, particularly in the context of cell-mediated LDL oxidation. Finally, the mechanisms by which ceruloplasmin, a copper-containing plasma protein, can bring about LDL modification are discussed. Improved understanding of the mechanisms of LDL oxidation by copper ions should facilitate the establishment of any physiological role of the metal in LDL modification. It will also assist in the interpretation of studies in which copper systems of LDL oxidation are used in vitro to evaluate potential antioxidants.  相似文献   

12.
Copper binding to apolipoprotein B-100 (apo B-100) and its reduction by endogenous components of low-density lipoprotein (LDL) represent critical steps in copper-mediated LDL oxidation, where cuprous ion (Cu(I)) generated from cupric ion (Cu(II)) reduction is the real trigger for lipid peroxidation. Although the copper-reducing capacity of the lipid components of LDL has been studied extensively, we developed a model to specifically analyze the potential copper reducing activity of its protein moiety (apo B-100). Apo B-100 was isolated after solubilization and extraction from size exclusion-HPLC purified LDL. We obtained, for the first time, direct evidence for apo B-100-mediated copper reduction in a process that involves protein-derived radical formation. Kinetics of copper reduction by isolated apo B-100 was different from that of LDL, mainly because apo B-100 showed a single phase-exponential kinetic, instead of the already described biphasic kinetics for LDL (namely alpha-tocopherol-dependent and independent phases). While at early time points, the LDL copper reducing activity was higher due to the presence of alpha-tocopherol, at longer time points kinetics of copper reduction was similar in both LDL and apo B-100 samples. Electron paramagnetic resonance studies of either LDL or apo B-100 incubated with Cu(II), in the presence of the spin trap 2-methyl-2-nitroso propane (MNP), indicated the formation of protein-tryptophanyl radicals. Our results supports that apo B-100 plays a critical role in copper-dependent LDL oxidation, due to its lipid-independent-copper reductive ability.  相似文献   

13.
The aim of our study was to determine, as a function of [Cu(2+)]/[LDL] ratios (0.5 and 0.05) and of oxidation phases, the extent of LDL oxidation by assessing the lipid and apo B oxidation products. The main results showed that: (i) kinetics of conjugated diene formation presented four phases for Cu(2+)/LDL ratio of 0.5 and two phases for [Cu(2+)]/[LDL] ratio of 0.05; (ii) oxidation product formation (cholesteryl ester and phosphatidylcholine hydroperoxides, apo B carbonyl groups) occurred early in the presence of endogenous antioxidants, under both copper oxidation conditions; (iii) apo B carbonylated fragments appeared when antioxidants were totally consumed at [Cu(2+)]/[LDL] ratio of 0.5; and (iv) antioxidant concentrations were stable, oxysterol formation was negligible, and no carbonylated fragment was detected at [Cu(2+)]/[LDL] ratio of 0.05. Depending on the copper/LDL ratio, oxidized LDL differ greatly in the nature of lipid peroxidation product and the degree of apo B fragmentation.  相似文献   

14.
Satchell L  Leake DS 《Biochemistry》2012,51(18):3767-3775
Low-density lipoprotein (LDL) has recently been shown to be oxidized by iron within the lysosomes of macrophages, and this is a novel potential mechanism for LDL oxidation in atherosclerosis. Our aim was to characterize the chemical and physical changes induced in LDL by iron at lysosomal pH and to investigate the effects of iron chelators and α-tocopherol on this process. LDL was oxidized by iron at pH 4.5 and 37 °C and its oxidation monitored by spectrophotometry and high-performance liquid chromatography. LDL was oxidized effectively by FeSO(4) (5-50 μM) and became highly aggregated at pH 4.5, but not at pH 7.4. The level of cholesteryl esters decreased, and after a pronounced lag, the level of 7-ketocholesterol increased greatly. The total level of hydroperoxides (measured by the triiodide assay) increased up to 24 h and then decreased only slowly. The lipid composition after 12 h at pH 4.5 and 37 °C was similar to that of LDL oxidized by copper at pH 7.4 and 4 °C, i.e., rich in hydroperoxides but low in oxysterols. Previously oxidized LDL aggregated rapidly and spontaneously at pH 4.5, but not at pH 7.4. Ferrous iron was much more effective than ferric iron at oxidizing LDL when added after the oxidation was already underway. The iron chelators diethylenetriaminepentaacetic acid and, to a lesser extent, desferrioxamine inhibited LDL oxidation when added during its initial stages but were unable to prevent aggregation of LDL after it had been partially oxidized. Surprisingly, desferrioxamine increased the rate of LDL modification when added late in the oxidation process. α-Tocopherol enrichment of LDL initially increased the rate of oxidation of LDL but decreased it later. The presence of oxidized and highly aggregated lipid within lysosomes has the potential to perturb the function of these organelles and to promote atherosclerosis.  相似文献   

15.
We previously reported that the expression of an epitope of apolipoprotein B (apoB), mapped to the C-terminus and defined by antibody Bsol7, increased during Cu2(+)-mediated oxidation of isolated low density lipoprotein (LDL). We describe now the properties of Bsol7 as a marker of LDL oxidation in whole plasma in relation to other effects of oxidative treatment of plasma, such as the distribution of apoA-I and cholesteryl ester transfer protein (CETP). In dialyzed plasma, no LDL oxidation was detected at Cu2+ concentrations (5 microM) sufficient for extensive oxidation of isolated LDL. At a higher Cu2+ concentration (50 microM), an increased expression of the Bsol7 epitope was observed; at 250 microM Cu2+, other evidence of LDL oxidation was found. The pattern of LDL response to Cu2+ observed in dialyzed plasma could be reproduced by adding 3% bovine serum albumin to isolated LDL. We demonstrate that the effect of albumin most likely results from its ability to bind copper ions. Incubation of plasma with increasing concentrations of Cu2+ resulted first in the disappearance of alpha 2-migrating HDL, the usual carrier of CEPT; free CETP and high molecular weight apoA-I-containing particles were also generated during oxidation. Addition of oxidized, but not native, LDL to plasma resulted in a transfer to LDL of some of the CETP initially associated with apoA-I. In conclusion, the increased immunoreactivity of the Bsol7 epitope was the most sensitive parameter of LDL oxidation, but other parameters, such as the presence of alpha 2-HDL and CETP-lipoprotein associations were even more sensitive evidence of lipoprotein oxidation.  相似文献   

16.
Abuja PM 《FEBS letters》2002,512(1-3):245-248
The content of plasma and arterial interstitial fluid in water-soluble antioxidants makes it unlikely for low-density lipoprotein (LDL) to oxidize by the oxidation mechanisms most frequently discussed. By aggregation of LDL in the presence of chondroitin-4-sulfate (C-4-S), but not with chondroitin-6-sulfate or sphingomyelinase, a complex arises which can oxidize in the presence of 20 microM ascorbate and 300 microM urate. This oxidation sensitivity even persists after the gel-filtration of an LDL/C-4-S/Cu(2+) complex, indicating entrapment of Cu(2+) within. This corresponds well to the known ability of C-4-S to bind copper ions and is a potential mechanism by which LDL oxidation in the arterial intima is facilitated after prolonged retention by the extracellular matrix.  相似文献   

17.
Oral administration of lanthanum chloride (LaCl(3)) was reported to inhibit atherosclerosis in experimental animals, but the mechanism was not clear. In the present work, the effects of La(III) and other lanthanide ions (Ln(III)) on Cu(II)-induced oxidation of isolated low-density lipoprotein (LDL) and the related mechanism were investigated. By monitoring the formation of conjugated dienes (CD), low concentrations of La(III), Gd(III) and Y(III) were found to inhibit Cu(II)-induced LDL oxidation kinetically, as characterized by the prolongation of the lag time, the decrease of the maximal accumulation of CD, and the maximal rate of CD accumulation. Using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN) as spin trapping agents, the electron spin resonance (ESR) results showed that La(III) and Gd(III) at low concentrations significantly decreased the level of free radicals, including alkoxyl radical (LO*), alkyl radical (L*), and a transient radical, alkylperoxyl radical (LOO*), generated during LDL oxidation induced by Cu(II). In addition, Fourier-transform infrared spectroscopy (FT-IR) study revealed that La(III) might cause the conformational change and the less aggregation of apolipoprotein B-100 (apoB) in LDL, as demonstrated by the decreasing contents of alpha-helix, intermolecular beta-sheet, unordered structure and beta-turns, and the increasing contents of intramolecular beta-sheet and beta-strands. The inhibitory effect of Ln(III) on Cu(II)-induced LDL oxidation was discussed on the basis of the decreased free radical level and the second structural changes of apoB in LDL.  相似文献   

18.
Oxidised low density lipoprotein (LDL) may be involved in the pathogenesis of atherosclerosis. We have therefore investigated the mechanisms underlying the antioxidant/pro-oxidant behavior of dehydroascorbate, the oxidation product of ascorbic acid, toward LDL incubated with Cu(2+) ions. By monitoring lipid peroxidation through the formation of conjugated dienes and lipid hydroperoxides, we show that the pro-oxidant activity of dehydroascorbate is critically dependent on the presence of lipid hydroperoxides, which accumulate during the early stages of oxidation. Using electron paramagnetic resonance spectroscopy, we show that dehydroascorbate amplifies the generation of alkoxyl radicals during the interaction of copper ions with the model alkyl hydroperoxide, tert-butylhydroperoxide. Under continuous-flow conditions, a prominent doublet signal was detected, which we attribute to both the erythroascorbate and ascorbate free radicals. On this basis, we propose that the pro-oxidant activity of dehydroascorbate toward LDL is due to its known spontaneous interconversion to erythroascorbate and ascorbate, which reduce Cu(2+) to Cu(+) and thereby promote the decomposition of lipid hydroperoxides. Various mechanisms, including copper chelation and Cu(+) oxidation, are suggested to underlie the antioxidant behavior of dehydroascorbate in LDL that is essentially free of lipid hydroperoxides.  相似文献   

19.
Glucose at pathophysiological concentrations was able to accelerate copper-induced oxidation of isolated low-density lipoprotein (LDL) and whole serum. The efficiency of glucose was favored under the following circumstances: (a) when LDL oxidation was induced by low copper concentration, (b) when LDL was partly oxidized, i.e. enriched with lipid peroxides. The glucose derivative methyl-alpha-D-glucoside was ineffective on Cu2+-induced LDL oxidation, pointing out the essential role of the reactivity of the aldehydic carbon for the pro-oxidative effect. When LDL oxidation was induced by a peroxyl radical generator, as a model of transition metal independent oxidation, glucose was ineffective. Glucose was found to stimulate oxidation of LDL induced by ceruloplasmin, the major copper-containing protein of human plasma. Thus, glucose accelerated oxidation of LDL induced by both free and protein bound copper. Considering the requirement for catalytically active copper and for the aldehydic carbon, the pro-oxidative effect of glucose is likely to depend on the increased availability of Cu+; this is more efficient in decomposing lipid peroxide than Cu2+, accounting for acceleration of LDL oxidation. The possible biological relevance of our work is supported by the finding that glucose was able to accelerate oxidation of whole serum, which was assessed by monitoring low-level chemiluminescence associated with lipid peroxidation.  相似文献   

20.
The oxidative modification of low-density lipoprotein (LDL) is suggested to play an important role in the pathogenesis of atherosclerosis. The present study examined the role of the formation of LDL-copper (Cu) complex in the peroxidation of LDL. The amount of copper bound to LDL increased during incubation performed with increasing concentrations of CuSO4. More than 80% of the copper bound to the LDL particle was observed in the protein phase of LDL, suggesting that most of the copper ions formed complexes with the ligand-binding sites of apoprotein. The addition of histidine (1 mM), known to form a high affinity complex with copper, and EDTA (1 mM), a metal chelator, during the incubation of LDL with CuSO4 prevented the formation of both thiobarbituric acid-reactive substances (TBARS) and LDL-Cu complexes. EDTA inhibited the copper-catalyzed ascorbate oxidation whereas histidine had no effect, suggesting that the copper within the complex with histidine is available to catalyze the reaction, in contrast to EDTA. These observations indicate that the preventive effect of histidine on the copper-catalyzed peroxidation of LDL is not simply mediated by chelating free copper ions in aqueous phase. Evidence that copper bound to LDL particle still has a redox potential was provided by the observed increase in TBARS content during incubation of LDL-Cu complexes in the absence of free copper ions. The addition of either histidine or EDTA to LDL-Cu complexes inhibited the formation of TBARS by removing copper ions from the LDL forming the corresponding complexes. However, there still remained small amounts of copper in the LDL particles following the treatment of LDL-Cu complexes with histidine or EDTA. The copper ions remaining in the LDL particle lacked the ability to catalyze LDL peroxidation, suggesting that there may be two types of copper binding sites in LDL: tight-binding sites, from which the copper ions are not removed by chelation, and weak-binding sites, from which copper ions are easily removed by chelators. The formation of TBARS in the LDL preparation during incubation with CuSO4 was comparable to the incubation with FeSO4. In contrast, the formation of TBARS in the LDL-lipid micelles by CuSO4 was nearly eliminated even in the presence of ascorbate to promote metal-catalyzed lipid peroxidation, although a marked increase in TBARS content was observed in the LDL-lipid micelles with FeSO4, and with FeCl3 in the presence of ascorbate.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号