首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Drosophila RhoA (Rho1) GTPase is essential for postembryonic morphogenesis of leg and wing imaginal discs. Mutations in RhoA enhance leg and wing defects associated with mutations in zipper, the gene encoding the heavy chain of nonmuscle myosin II. We demonstrate here that mutations affecting the RhoA signaling pathway also interact genetically with mutations in the Stubble-stubbloid (Sb-sbd) locus that encodes an unusual type II transmembrane serine protease required for normal leg and wing morphogenesis. In addition, a leg malformation phenotype associated with overexpression of Sb-sbd in prepupal leg discs is suppressed when RhoA gene dose is reduced, suggesting that RhoA and Sb-sbd act in a common pathway during leg morphogenesis. We also characterized six mutations identified as enhancers of zipper mutant leg defects. Three of these genes encode known members of the RhoA signaling pathway (RhoA, DRhoGEF2, and zipper). The remaining three enhancer of zipper mutations interact genetically with both RhoA and Sb-sbd mutations, suggesting that they encode additional components of the RhoA signaling pathway in imaginal discs. Our results provide evidence that the type II transmembrane serine proteases, a class of proteins linked to human developmental abnormalities and pathology, may be associated with intracellular signaling required for normal development.  相似文献   

2.
Nonmuscle myosin-II is a key motor protein that drives cell shape change and cell movement. Here, we analyze the function of nonmuscle myosin-II during Drosophila embryonic myogenesis. We find that nonmuscle myosin-II and the adhesion molecule, PS2 integrin, colocalize at the developing muscle termini. In the paradigm emerging from cultured fibroblasts, nonmuscle actomyosin-II contractility, mediated by the small GTPase Rho, is required to cluster integrins at focal adhesions. In direct opposition to this model, we find that neither nonmuscle myosin-II nor RhoA appear to function in PS2 clustering. Instead, PS2 integrin is required for the maintenance of nonmuscle myosin-II localization and we show that the cytoplasmic tail of the beta(PS) integrin subunit is capable of mediating this PS2 integrin function. We show that embryos that lack zygotic expression of nonmuscle myosin-II fail to form striated myofibrils. In keeping with this, we demonstrate that a PS2 mutant that specifically disrupts myofibril formation is unable to mediate proper localization of nonmuscle myosin-II at the muscle termini. In contrast, embryos that lack RhoA function do generate striated muscles. Finally, we find that nonmuscle myosin-II localizes to the Z-line in mature larval muscle. We suggest that nonmuscle myosin-II functions at the muscle termini and the Z-line as an actin crosslinker and acts to maintain the structural integrity of the sarcomere.  相似文献   

3.
Su Z  Kiehart DP 《Biochemistry》2001,40(12):3606-3614
Conventional myosins (myosin-IIs) generate forces for cell shape change and cell motility. Myosin heavy chain phosphorylation regulates myosin function in simple eukaryotes and may also be important in metazoans. To investigate this regulation in a complex eukaryote, we purified the Drosophila myosin-II tail expressed in Escherichia coli and showed that it was phosphorylated in vitro by protein kinase C(PKC) at serines 1936 and 1944, which are located in the nonhelical globular tail piece. These sites are close to a conserved serine that is phosphorylated in vertebrate, nonmuscle myosin-IIs. If the two serines are mutagenized to alanine or aspartic acid, phosphorylation no longer occurs. Using a 341 amino acid tail fragment, we show that there is no difference in the salt-dependent assembly of wild-type phosphorylated and mutagenized polypeptides. Thus, the nonmuscle myosin heavy chain in Drosophila, which is encoded by the zipper gene, appears to be similar to rabbit nonmuscle myosin-IIA. In vivo, we generated transgenic flies that expressed the various myosin heavy chain variants in a zipper null or near-null genetic background. Like their wild-type counterparts, such variants are able to completely rescue the lethal phenotype due to severe zipper mutations. These results suggest that while the myosin-II heavy chain can be phosphorylated by PKC, regulation by this enzyme is not required for viability in Drosophila. Conservation during 530-1000 million years of evolution suggests that regulation by heavy chain phosphorylation may contribute to nonmuscle myosin-II function in some real, but minor, way.  相似文献   

4.
Myosin phosphatase negatively regulates nonmuscle myosin II through dephosphorylation of the myosin regulatory light chain (MRLC). Its regulatory myosin-binding subunit, MBS, is responsible for regulating the catalytic subunit in response to upstream signals and for determining the substrate specificity. DMBS, the Drosophila homolog of MBS, was identified to study the roles of myosin phosphatase in morphogenesis. The embryos defective for both maternal and zygotic DMBS demonstrated a failure in dorsal closure. In the mutant embryos, the defects were mainly confined to the leading edge cells which failed to fully elongate. Ectopic accumulation of phosphorylated MRLC was detected in lateral region of the leading edge cells, suggesting that the role of DMBS is to repress the activation of nonmuscle myosin II at the subcellular location for coordinated cell shape change. Aberrant accumulation of F-actin within the leading edge cells may correspond to the morphological aberrations of such cells. Similar defects were seen in embryos overexpressing Rho-kinase, suggesting that myosin phosphatase and Rho-kinase function antagonistically. The genetic interaction of DMBS with mutations in the components of the Rho signaling cascade also indicates that DMBS functions antagonistically to the Rho signal transduction pathway. The results indicate an important role for myosin phosphatase in morphogenesis.  相似文献   

5.
6.
Signalling by the GTPase RhoA, a key regulator of epithelial cell behaviour, can stimulate opposing processes: RhoA can promote junction formation and apical constriction, and reduce adhesion and cell spreading. Molecular mechanisms are thus required that ensure spatially restricted and process-specific RhoA activation. For many fundamental processes, including assembly of the epithelial junctional complex, such mechanisms are still unknown. Here we show that p114RhoGEF is a junction-associated protein that drives RhoA signalling at the junctional complex and regulates tight-junction assembly and epithelial morphogenesis. p114RhoGEF is required for RhoA activation at cell-cell junctions, and its depletion stimulates non-junctional Rho signalling and induction of myosin phosphorylation along the basal domain. Depletion of GEF-H1, a RhoA activator inhibited by junctional recruitment, does not reduce junction-associated RhoA activation. p114RhoGEF associates with a complex containing myosin II, Rock II and the junctional adaptor cingulin, indicating that p114RhoGEF is a component of a junction-associated Rho signalling module that drives spatially restricted activation of RhoA to regulate junction formation and epithelial morphogenesis.  相似文献   

7.
Cytokinesis in animal cells is mediated by a cortical actomyosin-based contractile ring. The GTPase RhoA is a critical regulator of this process as it activates both nonmuscle myosin and a nucleator of actin filaments [1]. The site at which active RhoA and its effectors accumulate is controlled by the microtubule-based spindle during anaphase [2]. ECT-2, the guanine nucleotide exchange factor (GEF) that activates RhoA during cytokinesis, is regulated by phosphorylation and subcellular localization [3-5]. ECT2 localization depends on interactions with CYK-4/MgcRacGAP, a Rho GTPase-activating protein (GAP) domain containing protein [5, 6]. Here we show that, contrary to expectations, the Rho GTPase-activating protein (GAP) domain of CYK-4 promotes activation of RhoA during cytokinesis. Furthermore, we show that the primary phenotype caused by mutations in the GAP domain of CYK-4 is not caused by ectopic activation of CED-10/Rac1 and ARX-2/Arp2. However, inhibition of CED-10/Rac1 and ARX-2/Arp2 facilitates ingression of weak cleavage furrows. These results demonstrate that?a GAP domain can contribute to activation of a small GTPase. Furthermore, cleavage furrow ingression is sensitive to the balance of contractile forces and cortical tension.  相似文献   

8.
Myosin II, the conventional two-headed myosin that forms bipolar filaments, is directly involved in regulating cytokinesis, cell motility and cell morphology in nonmuscle cells. To understand the mechanisms by which nonmuscle myosin-II regulates these processes, investigators are now looking at the regulation of this molecule in vertebrate nonmuscle cells. The identification of multiple isoforms of nonmuscle myosin-II, whose activities and regulation differ from that of smooth muscle myosin-II, suggests that, in addition to regulatory light chain phosphorylation, other regulatory mechanisms control vertebrate nonmuscle myosin-II activity.  相似文献   

9.
Rho family small GTPases (Rho, Rac, and Cdc42) play an important role in cell motility, adhesion, and cell division by signaling reorganization of the actin cytoskeleton. Here, we report an isoactin-specific, Rho GTPase-dependent signaling cascade in cells simultaneously expressing smooth muscle and nonmuscle actin isoforms. We transfected primary cultures of microvascular pericytes, cells related to vascular smooth muscle cells, with various Rho-related and Rho-specific expression plasmids. Overexpression of dominant positive Rho resulted in the formation of nonmuscle actin-containing stress fibers. At the same time, -vascular smooth muscle actin (VSMactin) containing stress fibers were disassembled, resulting in a dramatic reduction in cell size. Rho activation also yielded a disassembly of smooth muscle myosin and nonmuscle myosin from stress fibers. Overexpression of wild-type Rho had similar but less dramatic effects. In contrast, dominant negative Rho and C3 exotransferase or dominant positive Rac and Cdc42 expression failed to alter the actin cytoskeleton in an isoform-specific manner. The loss of smooth muscle contractile protein isoforms in pericyte stress fibers, together with a concomitant decrease in cell size, suggests that Rho activation influences "contractile" phenotype in an isoactin-specific manner. This, in turn, should yield significant alteration in microvascular remodeling during developmental and pathologic angiogenesis. vascular smooth muscle actin; Rho GTPase; pericyte; myosin; cytoskeleton  相似文献   

10.
11.
Actin and nonmuscle myosin heavy chain (myosin-II) have been identified and localized in the cortex of unfertilized zebrafish eggs using techniques of SDS-polyacrylamide gel electrophoresis, immunoblotting, and fluorescence microscopy. Whole egg mounts, egg fragments, cryosections, and cortical membrane patches probed with rhodamine phalloidin, fluorescent DNase-I, or anti-actin antibody showed the cortical cytoskeleton to contain two domains of actin: filamentous and nonfilamentous. Filamentous actin was restricted to microplicae and the cytoplasmic face of the plasma membrane where it was organized as an extensive meshwork of interconnecting filaments. The cortical cytoplasm deep to the plasma membrane contained cortical granules and sequestered actin in nonfilamentous form. The cytoplasmic surface (membrane?) of cortical granules displayed an enrichment of nonfilamentous actin. An antibody against human platelet myosin was used to detect myosin-II in whole mounts and egg fragments. Myosin-II colocalized with both filamentous and nonfilamentous actin domains of the cortical cytoskeleton. It was not determined if egg myosin was organized into filaments. Similar to nonfilamentous actin, myosin-II appeared to be concentrated over the surface of cortical granules where staining was in the form of patches and punctate foci. The identification of organized and interconnected domains of filamentous actin, nonfilamentous actin, and myosin-II provides insight into possible functions of these proteins before and after fertilization. © 1996 Wiley-Liss, Inc.  相似文献   

12.
Regulation of vascular smooth muscle cell contractile state is critical for the maintenance of blood vessel tone. Abnormal vascular smooth muscle cell contractility plays an important role in the pathogenesis of hypertension, blood vessel spasm, and atherosclerosis. Myosin phosphatase, the key enzyme controlling myosin light chain dephosphorylation, regulates smooth muscle cell contraction. Vasoconstrictor and vasodilator pathways inhibit and activate myosin phosphatase, respectively. G-protein-coupled receptor agonists can inhibit myosin phosphatase and cause smooth muscle cell contraction by activating RhoA/Rho kinase, whereas NO/cGMP can activate myosin phosphatase and cause smooth muscle cell relaxation by activation of cGMP-dependent protein kinase. We have used yeast two-hybrid screening to identify a 116-kDa human protein that interacts with both myosin phosphatase and RhoA. This myosin phosphatase-RhoA interacting protein, or M-RIP, is highly homologous to murine p116RIP3, is expressed in vascular smooth muscle, and is localized to actin myofilaments. M-RIP binds directly to the myosin binding subunit of myosin phosphatase in vivo in vascular smooth muscle cells by an interaction between coiled-coil and leucine zipper domains in the two proteins. An adjacent domain of M-RIP directly binds RhoA in a nucleotide-independent manner. M-RIP copurifies with RhoA and Rho kinase, colocalizes on actin stress fibers with RhoA and MBS, and is associated with Rho kinase activity in vascular smooth muscle cells. M-RIP can assemble a complex containing both RhoA and MBS, suggesting that M-RIP may play a role in myosin phosphatase regulation by RhoA.  相似文献   

13.
14.
Mtl is a member of the Rho family of small GTPases in Drosophila. It was shown that Mtl is involved in planar cell polarity (PCP) establishment, together with other members of the same family like Cdc42, Rac1, Rac2 and RhoA. However, while Rac1, Rac2 and RhoA function downstream of Dsh in Fz/PCP signaling and upstream of a JNK cassette, Mtl and Cdc42 do not. To determine the functional context of Mtl during PCP establishment in the Drosophila eye, we performed a loss-of-function screen to search for dominant modifiers of a sev>Mtl rough eye phenotype. In addition, genetic interaction assays with candidate genes were also carried out. Our results show that Mtl interacts genetically with members and effectors of Egfr signaling, with components and/or regulators of other signal transduction pathways, and with genes involved in cell adhesion and cytoskeleton organization. One of these genes is hibris (hbs), which encodes a member of the immunoglobulin superfamily in Drosophila. Phenotypic analyses and genetic interaction assays suggest that it may have a role during PCP establishment, interacting with both Egfr and Fz/PCP signaling during this process. Taken together, our results indicate that Mtl is functionally related to the Egfr pathway regulating ommatidial rotation during PCP establishment in the eye, being a positive regulator of this pathway. Since Egfr signaling is linked to cytoskeletal and cell junctional elements, it is likely that Mtl may be regulating cytoskeleton dynamics and thus cell adhesion during ommatidial rotation in the context of that pathway.  相似文献   

15.
Cell migrations are found throughout the animal kingdom and are among the most dramatic and complex of cellular behaviors. Historically, the mechanics of cell migration have been studied primarily in vitro, where cells can be readily viewed and manipulated. However, genetic approaches in relatively simple model organisms are yielding additional insights into the molecular mechanisms underlying cell movements and their regulation during development. This review will focus on these simple model systems where we understand some of the signaling and receptor molecules that stimulate and guide cell movements. The chemotactic guidance factor encoded by the Caenorhabditis elegans unc-6 locus, whose mammalian homolog is Netrin, is perhaps the best known of the cell migration guidance factors. In addition, receptor tyrosine kinases (RTKs), and FGF receptors in particular, have emerged as key mediators of cell migration in vivo, confirming the importance of molecules that were initially identified and studied in cell culture. Somewhat surprisingly, screens for mutations that affect primordial germ cell migration in Drosophila have revealed that enzymes involved in lipid metabolism play a role in guiding cell migration in vivo, possibly by producing and/or degrading lipid chemoattractants or chemorepellents. Cell adhesion molecules, such as integrins, have been extensively characterized with respect to their contribution to cell migration in vitro and genetic evidence now supports a role for these receptors in certain instances in vivo as well. The role for non-muscle myosin in cell motility was controversial, but has now been demonstrated genetically, at least in some cell types. Currently the best characterized link between membrane receptor signaling and regulation of the actin cytoskeleton is that provided by the Rho family of small GTPases. Members of this family are clearly essential for the migrations of some cells; however, key questions remain concerning how chemoattractant and chemorepellent signals are integrated within the cell and transduced to the cytoskeleton to produce directed cell migration. New types of genetic screens promise to fill in some of these gaps in the near future.  相似文献   

16.
Ward RE  Evans J  Thummel CS 《Genetics》2003,165(3):1397-1415
Drosophila adult leg development provides an ideal model system for characterizing the molecular mechanisms of hormone-triggered morphogenesis. A pulse of the steroid hormone ecdysone at the onset of metamorphosis triggers the rapid transformation of a flat leg imaginal disc into an immature adult leg, largely through coordinated changes in cell shape. In an effort to identify links between the ecdysone signal and the cytoskeletal changes required for leg morphogenesis, we performed two large-scale genetic screens for dominant enhancers of the malformed leg phenotype associated with a mutation in the ecdysone-inducible broad early gene (br1). From a screen of >750 independent deficiency and candidate mutation stocks, we identified 17 loci on the autosomes that interact strongly with br1. In a complementary screen of approximately 112,000 F1 progeny of EMS-treated br1 animals, we recovered 26 mutations that enhance the br1 leg phenotype [E(br) mutations]. Rho1, stubbloid, blistered (DSRF), and cytoplasmic Tropomyosin were identified from these screens as br1-interacting genes. Our findings suggest that ecdysone exerts its effects on leg morphogenesis through a Rho1 signaling cascade, a proposal that is supported by genetic interaction studies between the E(br) mutations and mutations in the Rho1 signaling pathway. In addition, several E(br) mutations produce unexpected defects in midembryonic morphogenetic movements. Coupled with recent evidence implicating ecdysone signaling in these embryonic morphogenetic events, our results suggest that a common ecdysone-dependent, Rho1-mediated regulatory pathway controls morphogenesis during the two major transitions in the life cycle, embryogenesis and metamorphosis.  相似文献   

17.
GTPases of the Rho family regulate actinomyosin-based contraction in non-muscle cells. Activation of Rho increases contractility, leading to cell rounding and neurite retraction in neuronal cell lines. Activation of Rac promotes cell spreading and interferes with Rho-mediated cell rounding. Here we show that activation of Rac may antagonize Rho by regulating phosphorylation of the myosin-II heavy chain. Stimulation of PC12 cells or N1E-115 neuroblastoma cells with bradykinin induces phosphorylation of threonine residues in the myosin-II heavy chain; this phosphorylation is Ca2+ dependent and regulated by Rac. Both bradykinin-mediated and constitutive activation of Rac promote cell spreading, accompanied by a loss of cortical myosin II. Our results identify the myosin-II heavy chain as a new target of Rac-regulated kinase pathways, and implicate Rac as a Rho antagonist during myosin-II-dependent cell-shape changes.  相似文献   

18.
Reduced colonic motility has been observed in aged rats with a parallel reduction in acetylcholine (ACh)-induced myosin light chain (MLC(20)) phosphorylation. MLC(20) phosphorylation during smooth muscle contraction is maintained by a coordinated signal transduction cascade requiring both PKC-alpha and RhoA. Caveolae are membrane microdomains that permit rapid and efficient coordination of different signal transduction cascades leading to sustained smooth muscle contraction of the colon. Here, we show that normal physiological contraction can be reinstated in aged colonic smooth muscle cells (CSMCs) upon transfection with wild-type caveolin-1 through the activation of both the RhoA/Rho kinase and PKC pathways. Our data demonstrate that impaired contraction in aging is an outcome of altered membrane translocation of PKC-alpha and RhoA with a concomitant reduction in the association of these molecules with the caveolae-specific protein caveolin-1, resulting in a parallel decrease in the myosin phosphatase-targeting subunit (MYPT) and CPI-17 phosphorylation. Decreased MYPT and CPI-17 phosphorylation activates MLC phosphatase activity, resulting in MLC(20) dephosphorylation, which may be responsible for decreased colonic motility in aged rats. Importantly, transfection of CSMCs from aged rats with wild-type yellow fluorescent protein-caveolin-1 cDNA restored translocation of RhoA and PKC-alpha and phosphorylation of MYPT, CPI-17, and MLC(20), thereby restoring the contractile response to levels comparable with young adult rats. Thus, we propose that caveolin-1 gene transfer may represent a promising therapeutic treatment to correct the age-related decline in colonic smooth muscle motility.  相似文献   

19.
Rho GTPases participate in a wide variety of signal transduction pathways regulating the actin cytoskeleton, gene expression, cellular migration and proliferation. The aim of this study was to evaluate the role of Rho GTPases in signal transduction pathways during acinus formation in a human salivary gland (HSG) cell line initiated by extracellular matrix (ECM; Matrigel) alone or in combination with epidermal growth factor, basic fibroblast growth factor and lysophosphatidic acid (LPA). Immunohistochemical and Western blotting analyses showed that HSG cells contained RhoA, RhoB, Rac1 and Cdc42 proteins. All growth factors enhanced the effects of ECM on acinus formation, in a pathway dependent on PI3-kinase and Rho GTPases. The role of ROCK, a major RhoA effector, seemed limited to cortical actin polymerization. LPA stimulated cell migration and acinus formation in a PI3-kinase-independent pathway. The results suggest that Rho proteins are important for epithelial-mesenchymal interactions during salivary gland development.This work was supported by FAPESP (grant numbers: 97/09507-6, 01/09047-2).  相似文献   

20.
Location of the head-tail junction of myosin   总被引:7,自引:6,他引:1       下载免费PDF全文
The tails of double-headed myosin molecules consist of an alpha-helical/coiled-coil structure composed of two identical polypeptides with a heptad repeat of hydrophobic amino acids that starts immediately after a conserved proline near position 847. Both muscle and nonmuscle myosins have this heptad repeat and it has been assumed that proline 847 is physically located at the head-tail junction. We present two lines of evidence that this assumption is incorrect. First, we localized the binding sites of several monoclonal antibodies on Acanthamoeba myosin-II both physically, by electron microscopy, and chemically, with a series of truncated myosin-II peptides produced in bacteria. These data indicate that the head-tail junction is located near residue 900. Second, we compared the lengths of two truncated recombinant myosin-II tails with native myosin-II. The distances from the NH2 termini to the tips of these short tails confirms the rise per residue (0.148 nm/residue) and establishes that the 86-nm tail of myosin-II must start near residue 900. We propose that the first 53 residues of heptad repeat of Acanthamoeba myosin-II and other myosins are located in the heads and the proteolytic separation of S-1 from rod occurs within the heads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号