首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fifth-instar nymphs of Agallia constricta leafhoppers were injected abdominally with extracts from root tumors confining wound tumor virus (WTV). The insects were sacrificed at predetermined intervals, their internal organs dissected, fixed, embedded, sectioned, stained, and examined in a Siemens Elmiskop I. Sequential stages in virus development were reconstructed from consecutive samples of fatbody tissues. Changes resulting from the infection were: (i) a viroplasm, i.e., an accumulation of electron-dense aggregates; (ii) the appearance at the periphery of the viroplasm of a few fully formed virus particles recognized as virions; (iii) the formation of increasing numbers of individual virions, not only at the periphery but also in the viroplasm; (iv) the engulfing of virions within multimembranous structures; and (v) the formation of virus microcrystals either at the sites of former viroplasms, or at some distance. These morphological findings indicate that, following abdominal inoculation of WTV, the plant-pathogenic virus develops within the cytoplasmic matrix proper of insect vector cells. In addition to the fatbody tissues, WTV was detected in the epidermis, muscles, and trachea of abdominally inoculated insects, demonstrating the systemic invasion of the mechanically infected arthropod host. No virus was found in the gut tissues.  相似文献   

2.
The synganglion of Dermacentor variabilis Say is a single nerve mass, condensed around the esophagus and within the periganglionic sinus of the ciculatory system. Protocerebral, cheliceral (including stomodeal bridge), and pedipalpal ganglia lie in the pre-esophageal portion of the nerve mass and bear optic, cheliceral, and pedipalpal nerves respectively. The unpaired stomodeal and the recurrent nerve which forms the hyper-esophageal ganglion arise from the stomodeal bridge. Paired primary and accessory nerves to the retrocerebral organ complex have mixed protocerebral-cheliceral origins. Pedal ganglia (including ventral olfactory lobes of pedal ganglia I) and composite opisthosomal ganglion lie in the post-esophageal nerve mass and bear pedal nerve trunks and two pairs of opisthosomal nerves respectively. Internally, the synganglion consists of cellular rind and fibrous core. A welldefined neurilemma with a laminar matrix covers nerve mass and peripheral nerves. The rind contains the somata of ganglionic neurons and ensheathing glial cells and is restricted to the synganglion mass. It is limited by two specialized glial layers, the external perineurium and internal subperineurium. Discrete glomerular formations are present within the protocerebrum and olfactory lobes. Olfactory glomeruli located in pedal ganglia I are associated with a pair of globuli cell groups. Possible physiological relationships between anatomical specializations of the synganglion, extraneural sinuses and circulating hemocytes are considered. The evolutionary significances of condensation in the stomatogastric neuropile regions and throughout the synganglion, together with the simplification and loss of glomerular formations, are discussed.  相似文献   

3.
Viral agents producing both a syncytial-type cytopathic effect and type A intranuclear inclusion bodies in vitro were isolated from the kidneys of five of 10 wild turkeys. A plaque assay system for viral infectivity was developed and used to characterize one of the wild turkey viruses (WTV). WTV replication was inhibited by 5-bromodeoxyuridine, indicating the virus contained DNA as its genetic material. Virus infectivity could be transferred only as viable whole cell preparations; one cycle of rapid freezing and thawing completely inactivated the virus. Typical herpes-like virions were found within the nuclei when cells infected with WTV were examined by electron microscopy. WTV had characteristics typical of the herpes group of viruses.  相似文献   

4.
The ventral nerve cord of the spiny lobster, Panulirus argus was examined by transmission and scanning electron microscopy. Tannic acid mordant stain was used to enhance extracellular filaments. The ventral nerve cord is surrounded by an unusual perineurial sheath composed primarily of interwoven extracellular filaments. Gap junctions were found associated with the glial cells making up the perineurium. The axo-glial wrappings also contained extracellular filaments associated in bundles rather than uniformly around the axons. The extracellular filaments of the perineurium and axo-glial wrappings appeared to be morphologically identical with diameters ranging from 10-15 nm.  相似文献   

5.
河北环毛蚓神经系统 一氧化氮合酶的组织化学定位   总被引:8,自引:1,他引:7  
用依赖还原型辅酶Ⅱ的黄酶组织化学方法,研究了环节动物门寡毛纲种类河北环毛蚓(Pheretima tschiliensis)神经系统k 一氧化氮合酶(NOS)阳性细胞及阳性纤维的分布,结果表明,河北环毛蚓神经系统中脑神经节背侧有大量细胞呈现NO强阳性反应,胞体和突起染色明显。咽下神经中偶尔能见少数染色较浅的神经元。在脑神经节腹内侧、围咽神经、 咽下神经节外侧部及腹神经链中都有一氧化氮合酶阳性纤维存在脸染色很深,实验结果表明,在环节动物中作为信息分子的一氧化氮已广泛存在于神经系统中。  相似文献   

6.
Morphogenesis of Venezuelan Equine Encephalomyelitis Virus   总被引:5,自引:2,他引:3       下载免费PDF全文
Morphogenesis of Venezuelan equine encephalomyelitis virus was studied by means of electron microscopy. Virus-specific structures (factories, viroplasts) were found at early stages of infection; these structures were composed of fibrillar and cylindrical formations, aggregates of ribosomes, and viral nucleoids. The latter emerged from fibrillar and cylindrical structures. Aggregates of viral nucleoids were found in the cytoplasm and occasionally in the nuclei of virus-infected cells. Viral envelopes and mature virions were formed on the cell membranes and on the membranes of intracellular vacuoles. Anomalous forms of virions (both polygenomic and oligogenomic) were observed.  相似文献   

7.
Borna disease virus (BDV) infects cells of the nervous system in a wide range of species. Previous work suggests that there are differences in BDV replication in neuronal cells and glial cells. Many neurons are lysed by the immunopathologic response to BDV; lysis of dentate gyrus neurons in the absence of encephalitis is seen in rats inoculated with BDV as neonates. In contrast, persistently BDV-infected astrocytes increase over the course of BDV infection. Therefore, we compared BDV replication in neuronal (SK-N-SH and SK-N-SHEP) and astrocytic (C6) cell lines. While SK-N-SH cells produced more infectious virions per cell, the C6 cells contained more BDV proteins and RNA. BDV sequences in the supernatants of both cell types were identified, despite low titers of infectious virus, suggesting the release of incomplete virions into the medium. C6 cells secreted a factor or factors into the medium that enhanced the production of BDV proteins and RNA in other cell lines. In addition, nerve growth factor treatment produced the same enhancement. Thus, BDV replication in certain neural cells in vitro may be linked to the production of cell-specific factors which affect viral replication.  相似文献   

8.
The synganglion in the larvalAmblyomma americanum consists of a ganglionic mass pierced by the oesophagus. The nervous tissue consisting of an outer cortex and an inner neuropile is surrounded by an external neurilemma. The cortex comprises perineurium glial cells and neurosecretory and non-neurosecretory neuronal cell bodies. The neuropile consists of nerve fibres ensheathed by glial cells. The entire ganglionic mass is enclosed within a sinus of the circulatory system. No investigations using electron microscopy appear to have been made on the synganglion in the tick larval stage.  相似文献   

9.
The frontal ganglion contains approximately 20 cells and rests on the two posterior elevator muscles of the roof of the pharynx, thus locating the ganglion ventral and anterior to the brain. Two frontal nerves, a pair of lateral connectives, and the single recurrent nerve connect with the ganglion. There is a centrally located neuropile which is surrounded by the perineurium which in turn is covered by the neural lamella. The perineruium contains numerous glial cells and neurons with two large neurosecretory cells located in a dorsal lateral position of the ganglion.The neurosecretory cells were examined on five occasions during the year, and no significant changes occurred in the fine structure of the organelles or cellular products. The cells appear to be engaged in the synthesis of elementary neurosecretory granules throughout the year. This observation differs from previous studies on diapausing lepidopterous larvae and pupae. Axons from these two cells enter the lateral connectives and extend toward the protocerebrum.  相似文献   

10.
In this study, the condensation of the three thoracic and 11 abdominal segmental ganglia to form a prothoracic and central nerve mass during embryogenesis is described. During katatrepsis, many changes occur in the organization of these ganglia; this study suggests that some of these changes are caused by mechanical forces acting on the ventral nerve cord at this time. The ventral nerve cord begins its anterior migration and coalescence ten hours after katatrepsis and is completed 63 hours later. The central ganglion is made up of the meso- and metathoracic ganglia and seven abdominal ganglia. Intrasegmental median cord nuclei are shown to form glial elements in the median sagittal plane of the neuropile and in the longitudinal connectives. Intersegmental median cord neuroblasts migrate into the posterior gangliomeres but, apparently, degenerate soon after katatrepsis. Lateral cord cells bordering on the neuropile form a glial investment that surrounds this fiber tract region. Peripheral lateral cord cells are shown to form the cells of the outer ganglionic sheath, the perineurium.  相似文献   

11.
The structure of the perineurium in different parts of the peripheral nervous system of rats, rabbits and cats was studied by light-optical and electron microscopic methods. The structure of the perineurium in all the animals studied is sim8lar and consists of different number of the epithelial type layers of the perineural cells, with bundles of cooagnous fibres between them. The greatest anount of layers is found in the perineurium of the sensory and vegetative ganglia, their amount being less between the nerve trunks and bundles. Solitary sensory mielinated nerve fibres are surrounded with a perineural etui consisting of one or two cellular layers. The thickness of the perineural cells varies from 300 to 1500 A and only in the nucleus field it is equal to 1-2 mu. Every layer of the perineural cells is surrounded by a basal membrane. In their cytoplasm there are many pinocytic vesicles in addition to main organells. Between the perineural cells there exist close contacts. The internal layer of the perineurium is the place of origin of intraganglionic septa and in certain distance surrounds the vessels entering the ganglion. Ultrastructurally the perineural cells are similar to the endothelium of the vessels.  相似文献   

12.
The distribution of vasoactive intestinal polypeptide (VIP) containing nervous elements in the chicken pancreas was immunohistochemically investigated by light microscopy. Strongly VIP immunoreactive ganglia existed in the interlobular connective tissue. Ganglion containing both VIP immunoreactive and non-immunoreactive nerve cells was occasionally observed in the connective tissue. Almost all the ganglion cells also showed acetylcholinesterase (AChE) activity. No extrapancreatic nerve bundles containing VIP immunoreactive nerve fibres were detected. VIP immunoreactive nerve fibres formed plexuses in the subepithelial layer of secretory ducts and the muscle layer of small arteries. The distribution pattern of VIP immunoreactive nerve fibers was similar to that of AChE-positive nerve fibers on adjacent sections. The exocrine pancreas received a rich supply of varicose nerve fibers showing VIP immunoreactivity. B-islets also were richly innervated by VIP immunoreactive varicose nerve fibers, whereas A-islets, only poorly. These observations suggest that VIP containing nerves in the chicken pancreas have an intrinsic origin, are probably derived from VIP immunoreactive, intrapancreatic ganglion cells and innervate secretory ducts, arteries, acinar cells and B-islets, and that VIP must coexist with acetylcholine in the nervous elements.  相似文献   

13.
The distribution of brain-derived neurotrophic factor was examined in the rat mesencephalic trigeminal tract nucleus after transection and crush of the masseteric nerve. In the intact mesencephalic trigeminal tract nucleus, brain-derived neurotrophic factor was detected in small cells with fine processes. These cells and processes were occasionally located adjacent to tyrosine kinase B receptor-immunoreactive sensory neurons. The transection and crush of the masseteric nerve increased expression of brain-derived neurotrophic factor in the nucleus. The number and size of brain-derived neurotrophic factor-immunoreactive cells and processes were dramatically elevated by the nerve injury. As a result, the density of brain-derived neurotrophic factor-immunoreactive profiles in the mesencephalic trigeminal tract nucleus at 7 days after the injury was significantly higher compared with the intact nucleus. Double immunofluorescence method also revealed that brain-derived neurotrophic factor-immunoreactive cells were mostly immunoreactive for OX-42 but not glial fibrillary acidic protein. In addition, the retrograde tracing method demonstrated that brain-derived neurotrophic factor-immunoreactive cells and processes surrounded retrogradely labeled neurons which showed tyrosine kinase B receptor-immunoreactivity. These findings indicate that the nerve injury increases expression of brain-derived neurotrophic factor in microglia within the mesencephalic trigeminal tract nucleus. The glial neurotrophic factor may be associated with axonal regeneration of the injured primary proprioceptor in the trigeminal nervous system.  相似文献   

14.
The ultrastructure of the trunk lateral line nerve of larval and adult lampreys was studied with transmission electron microscopy. We confirmed that lampreys' lateral line nerve lacks myelin. Nevertheless, all axons were wrapped by Schwann cell processes. In the larval nerve, gaps between Schwann cells were observed, where the axolemma was covered only by a basal lamina, indicating an earlier developmental stage. In the adult nerve, glial (Schwann cell) ensheathment was mostly complete. Additionally, we observed variable ratios of axons to Schwann cells in larval and adult preparations. In the larval nerve, smaller axons were wrapped by one Schwann cell. Occasionally, a single Schwann cell surrounded two axons. Larger axons were associated with two to five Schwann cells. In the adult nerve, smaller axons were surrounded by one, but larger axons by three to eight Schwann cells. The larval epineurium contained large adipose cells, separated from each other by single fibroblast processes. This layer of adipose tissue was reduced in adult preparation. The larval perineurium was thin, and the fibroblasts, containing large amounts of glycogen granules, were arranged loosely. The adult perineurium was thicker, consisting of at least three layers of fibroblasts separated by collagen fibrils. The larval and adult endoneurium contained collagen fibrils oriented orthogonally to each other. Both larval and adult lateral line nerves possessed a number of putative fascicles weakly defined by a thin layer of perineurial fibroblasts. These results indicate that after a prolonged larval stage, the lamprey lateral line nerve is subjected to additional maturation processes during metamorphosis. J. Morphol. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Propagation of Japanese encephalitis (JE) virus in cells of dog cerebellar tissue cultures was investigated by means of fluorescent antibody (FA) technique. The fluorescent globulin conjugate was made from the serum of a dog inoculated with partially purified JE virus, treated by Sephadex G-25 and DEAE cellulose column chromatography and then adsorbed with dog liver powder. This preparation was found to be appropriate for the present work. Fluorescence was demonstrable in virus-infected cultures of three different types of cells, fibroblast-like cells, nerve cells and some of the glial type cells. Fluorescence could first be demonstrated about 20 hours after virus inoculation and appeared to increase in intensity in proportion to the increase of infective virus present in the cultures. The specificity of the reaction was supported by the non-reactivity of control (non-infected) cultures and by the results of blocking tests. The infected nerve cells and glial type cells also exhibited morphological changes clearly detectable by the FA techniques, corresponding to the changes shown in Bodian-stained preparations. The localization of FA antigen in the fibers of these cells suggests a possible mode of spread of JE virus in the nervous tissues. In any of the cell types studied thus far, the nuclei remained FA-unstained even during the advanced stage of infection.  相似文献   

16.
17.
NADPH-diaphorase (ND) positive cell types were characterized throughout the optic nerve of the tench in normal conditions and after optic nerve transection with survival periods of 1, 3, 7, 14, 30, 60, 120 and 180 days. Astrocytic markers (S100 and glutamine synthetase) and the microglial marker tomato lectin were employed. In the control prechiasmatic optic nerve two types (types I and II) of ND-positive glial cells appeared. All type I cells showed S100 immunoreactivity, whereas only a subpopulation of them were positive to glutamine synthetase. Type II cells only presented S100 immunoreactivity. In the control anterior optic tract, all ND-positive glial cells (type III) presented immunolabeling to S100 and glutamine synthetase. After transection, types I and II did not show any changes in the staining patterns for the glial markers when observed. Two new types of ND-positive glial cells (types IV and V) were observed after axotomy. All type IV cells were S100-immunopositive, and a subpopulation presented glutamine synthetase immunolabeling. Only a subpopulation of type V cells showed glutamine synthetase immunostaining. The presence of type IV or V cells in the lesioned optic nerve occurred simultaneously with significant decreases or absence of type I cells. These data suggest that type I and III cells are astrocytes and type II cells are oligodendrocytes. Types IV and V cells are the result of the activation of type I cells after optic nerve section. The polymorphism observed in ND-positive cells may reflect different cell functions during degenerative and regenerative processes.  相似文献   

18.
C Y Kang  T C Wong    K V Holmes 《Journal of virology》1975,16(4):1027-1038
The morphology and development of four members of the reticuloendotheliosis virus group were studied by transmission electron microscopy. Virions of duck spleen necrosis virus, duck infectious anemia virus, chicken syncytial virus, and reticuloendotheliosis virus strain T are sperical with a diameter of approximately 110 nm. They are covered with surface projections about 6 nm long and 10 nm in diameter. The center-to-center distance of surface projections is about 14 nm. The budding virions contain crescent-shaped electron-dense cores 73 nm in diameter with electron-lucent centers. After release of the virions the cores apparently become condensed to 67 nm in diameter. Virions were found budding at the plasma membrane and into smooth-walled, intracytoplasmic vesicles of productively infected cells. The distribution of budding reticuloendotheliosis viruses on cells appeared random over the cell surface, and occasionally aberrant multiple forms of budding virions were observed. The virions appear to resemble mammalian leukemia and sarcoma viruses more closely than avian leukosis-sarcoma viruses.  相似文献   

19.
In the central nervous system (CNS) of full-grown larvae of the blowfly Calliphora erythrocephala, the glial-ensheathed nerve cells are completely surrounded by a layer of perineurial cells which form a “blood-brain barrier” between the circulating haemolymph and the CNS. A variety of intercellular junctions, including gap and tight junctions, are found between adjacent perineurial cells and some also between apposing glial cells; these have been characterized by freeze-fracturing as well as by tracer studies and analysis of thin sections. They are found not to be present between such cells in the undifferentiated CNS in the newly hatched larvae, nor are the nerve cells encompassed by glial cells; ionic lanthanum can penetrate to the axonal surfaces at this stage. However, over the 5 days of larval growth and development the glial cells produce attentuated cytoplasmic processes that ensheath the nerve cells, and the perineurium is formed; junctional complexes are assembled and a larval blood-brain barrier is produced which excludes tracers. Freeze-fracture preparations suggest that the inverted gap junctions which develop have done so by migration of individual intramembranous EF particles to form, at first, linear arrays and small clusters and, ultimately, macular aggregations in the perineurium; these lie between the undulating rows of PF particles forming the septate junctions. These septate junctions are formed by the organization of arrays of PF particles into multiple rows. Extensive PF particles fusing into ridges with EF grooves to form perineurial “tight” junctions are also observed, seemingly in the process of development; entry of exogenous lanthanum followed by its exclusion parallels the completion of ridge formation. These ridges are simple linear arrays of particles which may be discontinuous, lying in parallel with one another and the surface. Clustered particle arrays as well as scattered short ridges on the axonal PF, however, appear to be present unchanged throughout larval life; their role may therefore be associated with neural membrane function although there are suggestions that some may form axo-glial junctions. This is the first report on the lateral migration of intramembranous particles as the mode of formation of gap junctions in the nervous system of an invertebrate.  相似文献   

20.
Theiler's virus, a picornavirus, persists for life in the central nervous system of mouse and causes a demyelinating disease that is a model for multiple sclerosis. The virus infects neurons first but persists in white matter glial cells, mainly oligodendrocytes and macrophages. The mechanism, by which the virus traffics from neurons to glial cells, and the respective roles of oligodendrocytes and macrophages in persistence are poorly understood. We took advantage of our previous finding that the shiverer mouse, a mutant with a deletion in the myelin basic protein gene (Mbp), is resistant to persistent infection to examine the role of myelin in persistence. Using immune chimeras, we show that resistance is not mediated by immune responses or by an efficient recruitment of inflammatory cells into the central nervous system. With both in vivo and in vitro experiments, we show that the mutation does not impair the permissiveness of neurons, oligodendrocytes, and macrophages to the virus. We demonstrate that viral antigens are present in cytoplasmic channels of myelin during persistent infection of wild-type mice. Using the optic nerve as a model, we show that the virus traffics from the axons of retinal ganglion cells to the cytoplasmic channels of myelin, and that this traffic is impaired by the shiverer mutation. These results uncover an unsuspected axon to myelin traffic of Theiler's virus and the essential role played by the infection of myelin/oligodendrocyte in persistence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号