首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A G Lee 《Biochemistry》1975,14(20):4397-4402
Absorption and fluorescence spectra are reported for chlorophyll a incorporated into a number of aqueous phospholipid dispersions. Absorption spectra show that in dipalmitoylphosphatidylcholine bilayers, monomeric and oligomeric forms of chlorophyll a are present in both the gel and liquid crystalline phases. The formation of aggregates of chlorophyll a is reflected in the fluorescence spectra by a marked concentration quenching. In bilayers conatining small proportions of chlorophyll a, a marked increase in aggregation occurs at the transition temperatures that can be detected calorimetrically. At higher concentrations (greater than 1 chlorophyll:100 lipid), the "pretransition" is abolished in the phosphatidylcholines, and the main transition is broadened, consistent with an orientation for the chlorophyll a with the chlorine ring in the head group region and the phytol chain in the fatty acid chain region of the bilayer. In mixtures of saturated and unsaturated lipids, there is no preferential segregation of the chlorophyll a into the unsaturated lipid.  相似文献   

2.
The molecular organization of sterols in liposomes of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) at 37 degrees C is examined by utilizing the fluorescent analogue of cholesterol cholesta-5,7,9-trien-3 beta-ol (cholestatrienol). (1) Cholestatrienol is shown to be indistinguishable from native cholesterol in terms of its ability to condense POPC, as determined by (i) pressure/area studies of mixed-lipid monolayers and (ii) its ability to increase the order of POPC bilayers (determined by electron spin resonance studies) whether on its own or admixed with cholesterol at various ratios. (2) By analysis of the perturbation of the absorption spectra, cholestatrienol was found to be freely miscible in aggregates of cholesterol in buffer. In contrast, a lack of any detectable direct interaction of the sterol molecules in POPC bilayers was detected. (3) Fluorescence intensity and lifetime measurements of POPC/sterol (1:1 mol/mol) at various cholesterol/cholestratrienol molar ratios (0.5:1 up to 1:1 cholestatrienol/POPC) confirmed that sterol molecules in the membrane matrix were not associated to any great degree. (4) A quantitative estimate of how close sterol molecules approach each other in the membrane matrix was evaluated from the concentration dependence of the steady-state depolarization of fluorescence and was found to be 10.6 A. From geometrical considerations, the sterol/phospholipid phase at 1:1 mol/mol is depicted as each sterol having four POPC molecules as nearest neighbors. We term this arrangement of the lipid matrix an "ordered bimolecular mesomorphic lattice". (5) The concentration dependence of depolarization of fluorescence of cholestatrienol in POPC liposomes in the absence of cholesterol yielded results that were consistent with the cholestatrienol molecules being homogeneously dispersed throughout the phospholipid phase at sterol/POPC ratios of less than 1:1. (6) From qualitative calculations of the van der Walls' hydrophobic interactions of the lipid species, the phospholipid condensing effect of cholesterol is postulated to arise from increased interpenetration of the flexible methylene segments of the acyl chains, as a direct result of their greater mutual attraction compared to their attraction for neighboring sterol molecules. (7) The interdependence of the ordered bimolecular mesomorphic lattice and the acyl chain condensation is discussed in an effort to understand the ability of cholesterol to modulate the physical and mechanical properties of biological membranes.  相似文献   

3.
Xu X  London E 《Biochemistry》2000,39(5):843-849
Detergent-insoluble membrane domains, enriched in saturated lipids and cholesterol, have been implicated in numerous biological functions. To understand how cholesterol promotes domain formation, the effect of various sterols and sterol derivatives on domain formation in mixtures of the saturated lipid dipalmitoylphosphatidylcholine (DPPC) and a fluorescence quenching analogue of an unsaturated lipid was compared. Quenching measurements demonstrated that several sterols (cholesterol, dihydrocholesterol, epicholesterol, and 25-hydroxycholesterol) promote formation of DPPC-enriched domains. Other sterols and sterol derivatives had little effect on domain formation (cholestane and lanosterol) or, surprisingly, strongly inhibit it (coprostanol, androstenol, cholesterol sulfate, and 4-cholestenone). The effect of sterols on domain formation was closely correlated with their effects on DPPC insolubility. Those sterols that promoted domain formation increased DPPC insolubility, whereas those sterols that inhibit domain formation decreased DPPC insolubility. The effects of sterols on the fluorescence polarization of diphenylhexatriene incorporated into DPPC-containing vesicles were also correlated with sterol structure. These experiments indicate that the effect of sterol on the ability of saturated lipids to form a tightly packed (i.e., tight in the sense that the lipids are closely packed with one another) and ordered state is the key to their effect on domain formation. Those sterols that promote tight packing of saturated lipids promote domain formation, while those sterols that inhibited tight packing of saturated lipids inhibited domain formation. The ability of some sterols to inhibit domain formation (i.e., act as "anti-cholesterols") should be a valuable tool for examining domain formation and properties in cells.  相似文献   

4.
The influence of a mammalian sterol cholesterol and a plant sterol beta-sitosterol on the structural parameters and hydration of bilayers in unilamellar vesicles made of monounsaturated diacylphosphatidylcholines (diCn:1PC, n=14-22 is the even number of acyl chain carbons) was studied at 30 degrees C using small-angle neutron scattering (SANS). Recently published advanced model of lipid bilayer as a three-strip structure was used with a triangular shape of polar head group probability distribution (Kucerka et al., Models to analyze small-angle neutron scattering from unilamellar lipid vesicles, Physical Review E 69 (2004) Art. No. 051903). It was found that 33 mol% of both sterols increased the thickness of diCn:1PC bilayers with n=18-22 similarly. beta-sitosterol increased the thickness of diC14:1PC and diC16:1PC bilayers a little more than cholesterol. Both sterols increased the surface area per unit cell by cca 12 A(2) and the number of water molecules located in the head group region by cca 4 molecules, irrespective to the acyl chain length of diCn:1PC. The structural difference in the side chain between cholesterol and beta-sitosterol plays a negligible role in influencing the structural parameters of bilayers studied.  相似文献   

5.
Wang J  Megha  London E 《Biochemistry》2004,43(4):1010-1018
The formation and stability of ordered lipid domains (rafts) in model membrane vesicles were studied using a series of sterols and steroids structurally similar to cholesterol. In one assay, insolubility in Triton X-100 was assessed in bilayers composed of sterol/steroid mixed with dipalmitoylphosphatidylcholine (DPPC), dioleoylphosphatidylcholine, or a 1:1 mixture of these phospholipids. In a second assay fluorescence quenching was used to determine the degree of ordered domain formation in bilayers containing sterol/steroid and a 1:1 mixture of DPPC and a quencher-carrying phosphatidylcholine. Both methods showed that several single modifications of the cholesterol structure weaken, but do not fully abolish, the ability of sterols and steroids to promote ordered domain formation when mixed with DPPC. Some of these modifications included a shift of the double bond from the 5-6 carbons (cholesterol) to 4-5 carbons (allocholesterol), derivatization of the 3-OH (cholesterol methyl ether, cholesteryl formate), and alteration of the 3-hydroxy to a keto group (cholestanone). An oxysterol involved in atherosclerosis, 7-ketocholesterol, formed domains with DPPC that were as thermally stable as those with cholesterol although not as tightly packed as judged by fluorescence anisotropy. It was also found that 7-ketocholesterol has fluorescence quenching properties making it a useful spectroscopic probe. Lathosterol, which has a 7-8 carbon double bond in place of the 5-6 double bond of cholesterol, formed rafts with DPPC that were at least as detergent-resistant as, and even more thermally stable than, rafts containing cholesterol. Because lathosterol is an intermediate in cholesterol biosynthesis, we conclude it is unlikely that sterol biosynthesis continues past lathosterol in order to create a raft-favoring lipid.  相似文献   

6.
The alterations in the absorption and fluorescence spectra observed for the polyene antibiotics filipin and nystatin in the presence of cholesterol are due to an exciton interaction (polyene aggregates) and cannot be attributed to a specific sterol-antibiotic complex. Filipin and nystatin molecules partition into the sterol aggregates, these structures being very efficient to induce exciton interaction; the observed splitting profile indicates that the chromophores are in a stacked arrangement (parallel transition dipoles). For filipin incorporated in lipid bilayers, the sterol is able to induce the same type of aggregate, at variance with nystatin.  相似文献   

7.
The role of the side chain of sterols and the sterol ring structure on the formation of ordered phases of the type observed in membrane rafts has been examined in aqueous dispersions of binary mixtures of sphingomyelin and androsterol. Comparisons have been made with binary systems of cholesterol, stigmasterol, beta-sitosterol, and ergosterol with either sphingomyelin or dipalmitoylphosphatidylcholine. Thermotropic phase behaviour and structure of the mixed aqueous dispersions were characterized by differential scanning calorimetry, synchrotron X-ray diffraction, freeze-fracture electron microscopy, and Fourier-transform infrared spectroscopy. We show that: (i) Androsterol is less efficient in promoting the formation of liquid-ordered phase than other naturally occurring sterols which possess a side chain, (ii) cholesterol is the most efficient sterol of those investigated in forming liquid-ordered phase, (iii) the molecular stoichiometry of egg sphingomyelin and androsterol in the liquid-ordered phase is about 2:1, and (iv) sphingomyelin can form more stable liquid-ordered phase than glycerophospholipid in binary systems containing androsterol.  相似文献   

8.
The role of the side chain of sterols and the sterol ring structure on the formation of ordered phases of the type observed in membrane rafts has been examined in aqueous dispersions of binary mixtures of sphingomyelin and androsterol. Comparisons have been made with binary systems of cholesterol, stigmasterol, β-sitosterol, and ergosterol with either sphingomyelin or dipalmitoylphosphatidylcholine. Thermotropic phase behaviour and structure of the mixed aqueous dispersions were characterized by differential scanning calorimetry, synchrotron X-ray diffraction, freeze-fracture electron microscopy, and Fourier-transform infrared spectroscopy. We show that: (i) Androsterol is less efficient in promoting the formation of liquid-ordered phase than other naturally occurring sterols which possess a side chain, (ii) cholesterol is the most efficient sterol of those investigated in forming liquid-ordered phase, (iii) the molecular stoichiometry of egg sphingomyelin and androsterol in the liquid-ordered phase is about 2:1, and (iv) sphingomyelin can form more stable liquid-ordered phase than glycerophospholipid in binary systems containing androsterol.  相似文献   

9.
As a step towards an automated and operator-free ion channel measurement platform we have previously demonstrated a solution formulation for artificial lipid bilayers that enabled the indefinite storage and shipping of frozen bilayer precursors. In this work, the solutions were deposited by hand. Here, we have adapted pin tools to deposit the bilayer precursor solutions onto multi-element arrays, a popular method for microarray solution deposition. The pin tools have enabled the deposited volume to be applied highly repeatably and controllably, resulting in reduction of bilayer formation times to <1 h. The pin tools are also compatible with computerized motion control platforms, enabling automated and high throughput production. We discuss these results and the prospects of this technology to produce high density bilayer arrays for high throughput measurement of ion channels incorporated into artificial bilayers.  相似文献   

10.
The in vitro effects of plant sterols were investigated with regard to their uptake and membrane lipid fluidity in human keratinocytes. Among the different media tested to transport sterols (liposomes, micelles and organic solvents), the best results in terms of incorporation and viability were obtained by the use of the organic solvents dimethylsulfoxide and ethanol. After 48 h incubation exogenous sterol can account for about 30% of the total cell sterol content. The total sterol amount in plasma membranes increased 2-fold after incubation with cholesterol, whereas it was not altered when phytosterols were incorporated. The incorporation of cholesterol, sitosterol and stigmasterol led to an increase in the percent of unsaturated fatty acid C18:1 in the plasma membrane. The effect of this uptake on membrane fluidity was studied by means of fluorescence polarisation using DPH and TMA-DPH as fluorescent probes. Whereas cholesterol and sitosterol had no significant effect on the DPH fluorescence anisotropy (rs), the presence of stigmasterol induced a 12% decrease of rs reflecting an increase in membrane fluidity. We can conclude from this study that in the presence of sitosterol, the mean fluidity of the membrane is regulated whereas stigmasterol triggers a looseness of molecular packing of phospholipids acyl chains, in accordance with previous results obtained on purely lipid model membranes.  相似文献   

11.
Intramolecular excimerization of 1,3-di-1-pyrenylpropane [Py(3)Py] was used to assess the fluidity of sarcoplasmic reticulum membranes (SR); on the basis of the spectral data, the probe incorporates completely inside the membrane probably somewhere close to the polar head groups of phospholipid molecules, however not in the very hydrophobic core. The excimerization rate is very sensitive to lipid phase transitions, as revealed by thermal profiles of dimyristoyl-phosphatidylcholine (DMPC) and dipalmitoylphosphatidylcholine (DPPC) bilayers. Cholesterol abolishes pretransitions and broadens the thermal profiles of the main transitions which vanish completely at 50 mol % sterol. Excimer formation in liposomes of SR total lipid extracts does not show any sharp transitions, as in the case of DMPC and DPPC. However, the plots display discontinuities at about 20 degrees C which are broadened by cholesterol and not observed at 50 mol % sterol. Also cholesterol has been incorporated in native SR membranes by an exchange technique allowing progressive enrichment without changing the phospholipid/protein molar ratio. As in liposomes, discontinuities of excimer formation at 20 degrees C are broadened by cholesterol enrichment. The full activity of uncoupled Ca2+-ATPase is only affected by cholesterol above a molar ratio to phospholipid of 0.4. However, a significant decrease in activity (about 20%) is only noticed at a ratio of 0.6 (the highest technically achieved); at this ratio, about 28 lipid molecules per Ca2+-ATPase are expected to be relatively free from cholesterol interaction. The vesicle structure is still intact at this high ratio, as judged from the absence of basal activity (not Ca2+ stimulated).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The influence of a mammalian sterol cholesterol and a plant sterol β-sitosterol on the structural parameters and hydration of bilayers in unilamellar vesicles made of monounsaturated diacylphosphatidylcholines (diCn:1PC, n = 14-22 is the even number of acyl chain carbons) was studied at 30 °C using small-angle neutron scattering (SANS). Recently published advanced model of lipid bilayer as a three-strip structure was used with a triangular shape of polar head group probability distribution (Ku?erka et al., Models to analyze small-angle neutron scattering from unilamellar lipid vesicles, Physical Review E 69 (2004) Art. No. 051903). It was found that 33 mol% of both sterols increased the thickness of diCn:1PC bilayers with n = 18-22 similarly. β-sitosterol increased the thickness of diC14:1PC and diC16:1PC bilayers a little more than cholesterol. Both sterols increased the surface area per unit cell by cca 12 Å2 and the number of water molecules located in the head group region by cca 4 molecules, irrespective to the acyl chain length of diCn:1PC. The structural difference in the side chain between cholesterol and β-sitosterol plays a negligible role in influencing the structural parameters of bilayers studied.  相似文献   

13.
Complex formation of gramicidin (GA) and desformylgramicidin (des-GA) with sterols was investigated by measuring the intrinsic Trp fluorescence. In organic solvents, the Trp fluorescence of momeric GA was quenched upon binding either cholesterol or ergosterol, but that of monomeric des-GA was not quenched by adding cholesterol. Both dimeric GA and des-GA bound highly to ergosterol, but not to cholesterol, determined by quenching of Trp fluorescence. Furthermore, GA- and des-GA-loaded lysophosphatidylcholine micelles were incubated with phosphatidylcholine vesicles containing cholesterol or ergosterol. The results showed that both monomeric and dimeric peptides hardly bound to cholesterol incorporated into phospholipid vesicles, but markedly bound to ergosterol incorporated into the bilayer membranes. Interestingly, des-GA bound more specifically to the two sterols than GA. In addition, fluorescence resonance energy transfer analysis showed that des-GA bound more specifically to the two sterol than GA.  相似文献   

14.
The lipophilic dye merocyanine 540 (MC540) was used to model small molecule-membrane interactions using micropatterned lipid bilayer arrays (MLBAs) prepared using a 3D Continuous Flow Microspotter (CFM). Fluorescence microscopy was used to monitor MC540 binding to fifteen different bilayer compositions simultaneously. MC540 fluorescence was two times greater for bilayers composed of liquid-crystalline (l.c.) phase lipids (1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC),1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)) compared to bilayers in the gel phase (1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)). The effect cholesterol (CHO) had on MC540 binding to the membrane was found to be dependent on the lipid component; cholesterol decreased MC540 binding in DMPC, DPPC and DSPC bilayers while having little to no effect on the remaining l.c. phase lipids. MC540 fluorescence was also lowered when 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (sodium salt) (DOPS) was incorporated into DOPC bilayers. The increase in the surface charge density appears to decrease the occurrence of highly fluorescent monomers and increase the formation of weakly fluorescent dimers via electrostatic repulsion. This paper demonstrates that MLBAs are a useful tool for preparing high density reproducible bilayer arrays to study small molecule-membrane interactions in a high-throughput manner.  相似文献   

15.
Developmental changes in synaptic membrane lipid composition and fluidity   总被引:5,自引:0,他引:5  
Synaptic membrane enriched fractions were prepared from 7 and 14 day and adult cortical nerve endings. (a) The levels of synaptic membrane phosphatidylcholine decrease 19% during development while the levels of ethanolamine phosphoglycerides increase 21%. (b) On day 7, desmosterol accounts for 33% of the total membrane sterols. With maturity, the desmosterol disappears and the molar sterol/lipid P ratio increases 56%. (c) The fatty acid composition of the membranes change during development. 16:0 decreases 36% while 18:1 increases 49%. 16:1, a minor component of adult membranes, is found in significant quantities in pup membranes. 22:6 (n-3) increases 34% during development while 22:5 (n-6) decreases 59%. (d) The microviscosity of synaptic membranes, as measured by the fluorescence depolarization technique, increases during development. This effect is observed in both intact membranes and bilayers prepared from lipid extracts of the membrane.  相似文献   

16.
Infrared spectra of hydrated dimyristoylphosphatidyl glycerol (DMPG) and of aqueous dispersions of melittin and DMPG at peptide:lipid molar ratios of 1:10 and 1:4 were recorded as a function of pressure from atmospheric to 22 kbar. Spectral features corresponding to vibrations of the amide linkages in melittin and to various functional groups in DMPG (carbonyl, methlylene, phosphate) were monitored in order to investigate the structure and dynamics of melittin:DMPG dispersions. Melittin was found to cause conformational and orientational disordering of the acyl chains in DMPG bilayers. The magnitude of these disorders was higher for higher concentration of melittin in DMPG. The higher concentration of melittin was also found to disrupt the DMPG bilayers through interactions with the lipid head groups. Such disruption may be related to some of the biological properties of melittin.  相似文献   

17.
Of the polar lipids studied (phospholipids and glycolipids), only phosphatidylcholine and sphingomyelin can disperse in water with up to 2 mol cholesterol/mol polar lipid. However, mixtures of phosphatidylethanolamine with small amounts of phosphatidylcholine and mixed lipids from mitochondria and myelin will also form sterol-rich dispersions. Steroids in which the 3β-OH group is replaced by an oxo function do not form such steroid-rich dispersions. Electron microscopy and optical rotatory dispersion (ORD) show that sterols disperse with cerebrosides and gangliosides to form cylindrical structures with the regions around C atoms 3 and 7 of the sterol in less polar environments than those they occupy in phospholipid liposomes.

It is proposed that choline-containing phospholipids facilitate entry of sterol molecules into the outer leaflet of cell surface membranes but that the phospholipid composition itself will not give rise to an asymmetric distribution of sterol in membranes with a high cholesterol content.  相似文献   


18.
Reconstitution of functionally active membrane protein into artificially made lipid bilayers is a challenge that must be overcome to create a membrane-based biomimetic sensor and separation device. In this study we address the efficacy of proteoliposome fusion with planar membrane arrays. We establish a protein incorporation efficacy assay using the major non-specific porin of Fusobacterium nucleatum (FomA) as reporter. We use electrical conductance measurements and fluorescence microscopy to characterize proteoliposome fusion with an array of planar membranes. We show that protein reconstitution in biomimetic membrane arrays may be quantified using the developed FomA assay. Specifically, we show that FomA vesicles are inherently fusigenic. Optimal FomA incorporation is obtained with a proteoliposome lipid-to-protein molar ratio (LPR) = 50 more than 105 FomA proteins could be incorporated in a bilayer array with a total membrane area of 2 mm2 within 20 min. This novel assay for quantifying protein delivery into lipid bilayers may be a useful tool in developing biomimetic membrane applications.  相似文献   

19.
The effects of a series of sterols on molecular order and motion in bilayers formed from egg lecithin and dicetylphosphate were examined and correlations between order and data on permeability to 22Na+ were sought. Electron spin resonance spectra were observed for probes intercalated both in multilamellar dispersions where the effects of motion and orientation are difficult to separate, and in planar multibilayers where the degree of molecular order may be measured even in the presence of slow probe motion. It was concluded from the planar multi-bilayer data that sterols which increase the degree of ordering of lipid molecules decrease 22Na+ permeability, and that sterols which have the opposite effect on order increase permeability. All the sterols tested lead to decreased rates of motion of the probes. This effect obscures the correlation between order and permeability using data from dispersions.  相似文献   

20.
Summary The effects of fourteen sterols on the NMR spectra of liposomes derived from egg yolk phosphatidylcholines were studied by continuous-wave and Fourier-transform measurements at 60 MHz. Sterols were compared for their ability to broaden the acyl methylene resonances of phosphatidylcholine, when incorporated into liposomes at 25% molar ratio. The ratio of the phosphatidylcholine peak heights (acyl methylene: cholinen-methyl) was used as a criterion of the relative condensing activity for the different sterols. This ratio was inversely proportional to the molar volume of the incorporated sterol, as measured by the parachor of the compound. Small sterols had little condensing effect, and the larger sterols such as cholesterol and ergosterol had maximum condensing effects. The study confirmed the importance of the sterol side-chain at C-17 as a requirement for sterol-phospholipid interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号