首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The effect of water activity (aw) on the growth and end-product formation of Lactobacillus viridescens SMRICC 174, Lactobacillus SMRICC 173 (homofermentative) and Brochothrix thermosphacta ATCC 11509T was studied. All strains orginated from meat or meat products. The aw was adjusted in the range 0.94–0.99 with NaCl or glycerol. A greater reduction in growth rates was found for L. viridescens and B. thermosphacta when aw was regulated with NaCl rather than with glycerol, the opposite was true for Lactobacillus 173. L. viridescens grew at aw >-0.94. At 0.94 aw B. thermosphacta was totally inhibited when NaCl was the solute and Lactobacillus 173 when glycerol was the solute. Only minor variations in the end-product formation of the Lactobacillus spp. were found at different aw values. In aerobic culture B. thermosphacta produced less l-lactic acid and more acetic acid as the aw was decreased with NaCl, while the yields were unaffected when glycerol was used.  相似文献   

2.
The effect of citrate on production of diacetyl and acetoin by four strains each of heterofermentative and homofermentative lactic acid bacteria capable of utilizing citrate was studied. Acetoin was quantitatively the more important compound. The heterofermentative bacteria produced no acetoin or diacetyl in the absence of citrate, and two strains produced traces of acetoin in its presence. Citrate stimulated the growth rate of the heterofermentative lactobacilli. Acidification of all heterofermentative cultures with citric acid resulted in acetoin production. Destruction of accumulated acetoin appeared to coincide with the disappearance of citrate. All homofermentative bacteria produced more acetoin and diacetyl in the presence of citrate than in its absence. Citrate utilization was begun immediately by the streptococci but was delayed until at least the middle of the exponential phase in the case of the lactobacilli.  相似文献   

3.
The effect of citrate on production of diacetyl and acetoin by four strains each of heterofermentative and homofermentative lactic acid bacteria capable of utilizing citrate was studied. Acetoin was quantitatively the more important compound. The heterofermentative bacteria produced no acetoin or diacetyl in the absence of citrate, and two strains produced traces of acetoin in its presence. Citrate stimulated the growth rate of the heterofermentative lactobacilli. Acidification of all heterofermentative cultures with citric acid resulted in acetoin production. Destruction of accumulated acetoin appeared to coincide with the disappearance of citrate. All homofermentative bacteria produced more acetoin and diacetyl in the presence of citrate than in its absence. Citrate utilization was begun immediately by the streptococci but was delayed until at least the middle of the exponential phase in the case of the lactobacilli.  相似文献   

4.
Microbiota analysis of blown pack spoiled salami revealed five distinguishable Lactobacillus isolates we could not assign to a known species. Two of the isolates (TMW 1.2172T and TMW 1.1920) are rod-shaped, whilst three isolates (TMW 1.2098T, TMW 1.2118 and TMW 1.2188) appear coccus shaped or as short rods. All isolates are Gram-stain positive, facultative anaerobic, catalase and oxidase negative, non-motile and non-sporulating. Phylogenetic analysis of the 16S rRNA, dnaK, pheS and rpoA gene sequences revealed two distinct lineages within the genus Lactobacillus (L.). The isolates are members of the Lactobacillus alimentarius group with Lactobacillus ginsenosidimutans DSM 24154T (99.4% 16S similarity), Lactobacillus versmoldensis DSM 14857T (97.9%) and Lactobacillus furfuricola DSM 27174T (97.7%) as phylogenetic closest related species and L. alimentarius DSM 20249T (97.7%) and Lactobacillus paralimentarius DSM 13961T (97.5%) as closest relatives, respectively. Average Nucleotide Identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the isolates and their close related type strains are lower than 80% and 25%, respectively. For both designated type strains, the peptidoglycan type is A4α l-Lys-d-Asp and the major fatty acids are C16:0, C18:1ω9c and summed feature 7. Based on phylogenetic, phenotypic and chemotaxonomic analysis we demonstrated that the investigated isolates belong to two novel Lactobacillus species for which we propose the names Lactobacillus salsicarnum with the type strain TMW 1.2098T = DSM 109451T = LMG 31401T and Lactobacillus halodurans with the type strain TMW 1.2172T = DSM 109452T = LMG 31402T.  相似文献   

5.
A survey of lactic acid bacteria in Italian silage   总被引:3,自引:2,他引:1  
G razia , L. & S uzzi , G. 1984. A survey of lactic acid bacteria in Italian silage. Journal of Applied Bacteriology 56 , 373–379.
Lactic acid bacteria, isolated from Italian ensiled products, were represented by strains of the genera Lactobacillus and Leuconostoc . The predominant strains were heterofermentative lactobacilli, with Lactobacillus buchneri being the most frequent. Among homofermentative lactic acid bacteria, strains of Lact. plantarum and Lact. casei were recovered. Almost all strains utilized malic acid and showed good acid-tolerance, but only some of them were able to metabolize malic acid at extremely low pH; these were five homofermentative lactobacilli (4 Lact. plantarum and 1 Lacr. casei var. casei ) and two heterofermentative lactobacilli ( Lact. cellobiosus and Lactobacillus sp.).  相似文献   

6.
Lactobacilli are used widely in food, feed, and health applications. The taxonomy of the genus Lactobacillus, however, is confounded by the apparent lack of physiological markers for phylogenetic groups of lactobacilli and the unclear relationships between the diverse phylogenetic groups. This study used the core and pan-genomes of 174 type strains of Lactobacillus and Pediococcus to establish phylogenetic relationships and to identify metabolic properties differentiating phylogenetic groups. The core genome phylogenetic tree separated homofermentative lactobacilli and pediococci from heterofermentative lactobacilli. Aldolase and phosphofructokinase were generally present in homofermentative but not in heterofermentative lactobacilli; a two-domain alcohol dehydrogenase and mannitol dehydrogenase were present in most heterofermentative lactobacilli but absent in most homofermentative organisms. Other genes were predominantly present in homofermentative lactobacilli (pyruvate formate lyase) or heterofermentative lactobacilli (lactaldehyde dehydrogenase and glycerol dehydratase). Cluster analysis of the phylogenomic tree and the average nucleotide identity grouped the genus Lactobacillus sensu lato into 24 phylogenetic groups, including pediococci, with stable intra- and intergroup relationships. Individual groups may be differentiated by characteristic metabolic properties. The link between phylogeny and physiology that is proposed in this study facilitates future studies on the ecology, physiology, and industrial applications of lactobacilli.  相似文献   

7.
 The effect of the addition of oleuropein (OLP) and NaCl on the growth and the DL-lactic acid production of Lactobacillus plantarum DSM 10492 has been investigated by using an unconventional medium. The growth of L. plantarum was not inhibited by the addition of increasing amounts of untreated OLP in the presence or absence of glucose. However, bacterial cells grew in quantity slightly with OLP alone. The increased addition of NaCl was associated with a delay in growth. Moreover, there was no growth with 8% NaCl. The addition of both NaCl and OLP resulted in growth inhibition, and the survival of cells decreased strongly. The main fermentation product was DL-lactic acid, but acetic acid was also detected after a prolonged incubation. L. plantarum produced DL-lactic acid in the presence of OLP alone but its formation decreased with increasing levels of OLP. On the other hand, heat-treated OLP had a bactericidal effect. Received: 16 October 1995/Received last revision: 5 February 1996/Accepted: 12 February 1996  相似文献   

8.
S ummary . The glycerol metabolism of homofermentative and heterofermentative strains of Lactobacillus obtained either from Culture Collections or isolated from sausages has been investigated.
The results show that the homofermentative lactobacilli ( Thermobacterium and Streptobacterium ) produce mannose phosphate which is then metabolized to lactic acid and other byproducts.  相似文献   

9.
We isolated and characterized a d-lactic acid-producing lactic acid bacterium (d-LAB), identified as Lactobacillus delbrueckii subsp. lactis QU 41. When compared to Lactobacillus coryniformis subsp. torquens JCM 1166 T and L. delbrueckii subsp. lactis JCM 1248 T, which are also known as d-LAB, the QU 41 strain exhibited a high thermotolerance and produced d-lactic acid at temperatures of 50 °C and higher. In order to optimize the culture conditions of the QU 41 strain, we examined the effects of pH control, temperature, neutralizing reagent, and initial glucose concentration on d-lactic acid production in batch cultures. It was found that the optimal production of 20.1 g/l d-lactic acid was acquired with high optical purity (>99.9% of d-lactic acid) in a pH 6.0-controlled batch culture, by adding ammonium hydroxide as a neutralizing reagent, at 43 °C in MRS medium containing 20 g/l glucose. As a result of product inhibition and low cell density, continuous cultures were investigated using a microfiltration membrane module to recycle flow-through cells in order to improve d-lactic acid productivity. At a dilution rate of 0.87 h−1, the high cell density continuous culture exhibited the highest d-lactic acid productivity of 18.0 g/l/h with a high yield (ca. 1.0 g/g consumed glucose) and a low residual glucose (<0.1 g/l) in comparison with systems published to date.  相似文献   

10.
In order to produce l(+)-lactic acid to be employed in poly-l-lactic acid polymer production, for biomedical applications, the strain Lactobacillus casei subsp. casei DSM 20011 was studied in a conventional batch mode using different initial concentrations of glucose. The results obtained showed that the initial glucose concentration exerts an influence on the fermentation pattern, modifying the different fermentation parameters. Nevertheless, the product yield remained at a constant value of 0.86 g·g–1. The proposed novel system of product recovery, based on the use of ion-exchange resins, gave high yields of pure lactic acid. Correspondence to: D. Matteuzzi  相似文献   

11.
In this paper, in order to obtain some industrial strains with high yield of l-(+)-lactic acid, the wild type strain Lactobacillus casei CICC6028 was mutated by nitrogen ions implantation. By study, it was found that the high positive mutation rate was obtained when the output power was 10 keV and the dose of N+ implantation was 50 × 2.6 × 1013 ions/cm2. In addition, the initial screening methods were also studied, and it was found that the transparent halos method was unavailable, for some high yield strains of l-(+)-lactic acid were missed. Then a mutant strain which was named as N-2 was isolated, its optimum fermentation temperature was 40°C and the l-(+)-lactic acid yield was 136 g/l compared to the original strain whose optimum fermentation temperature was 34°C and l-(+)-lactic acid production was 98 g/l. Finally, High Performance Liquid Chromatography method was used to analyze the purity of l-(+)-lactic acid that was produced by the mutant N-2, and the result showed the main production of N-2 was l-(+)-lactic acid.  相似文献   

12.
The effects of temperature, aerobic and anaerobic conditions in the silo and plant characteristics [water-soluble carbohydrate (WSC) contents, growing season] on the fermentation characteristics of a tropical forage species, Sorghum bicolor cv. sugar-drip, were investigated. Silages fermented in oxygen-impermeable bags were well preserved and had low pH (3.7), high lactic acid [72 g kg–1 dry matter (DM) 80% of total acids], and low butyric acid (0.12 g kg–1 DM) and ammonia nitrogen (NH3–N) (57 g kg–1 total nitrogen contents. Conversely, the use of oxygen-permeable bags as silos allowed aerobic decomposition of the ensiled forages. Increasing the incubation temperature lowered the population of lactic acid bacteria, reduced lactic acid production and caused the pH to rise. The heterofermentative Leuconostoc spp. predominated on fresh forages but homofermentative Lactobacillus plantarum began to dominate after 5 and 8 days of fermentation. Heterofermentative lactobacilli, notably Lactobacillus brevis, were dominant among the isolates obtained from 100-day silages. Varying the WSC contents, by crushing and/or chopping the forage, and growing season did not significantly affect the fermentation quality of the resulting silages. It was concluded that the maintenance of anaerobic conditions is essential if good quality silage is to be produced from tropical forage species.  相似文献   

13.
In mineral salts medium under oxygen deprivation, Corynebacterium glutamicum exhibits high productivity of l-lactic acid accompanied with succinic and acetic acids. In taking advantage of this elevated productivity, C. glutamicum was genetically modified to produce d-lactic acid. The modification involved expression of fermentative d-lactate dehydrogenase (d-LDH)-encoding genes from Escherichia coli and Lactobacillus delbrueckii in l-lactate dehydrogenase (l-LDH)-encoding ldhA-null C. glutamicum mutants to yield strains C. glutamicum ΔldhA/pCRB201 and C. glutamicum ΔldhA/pCRB204, respectively. The productivity of C. glutamicum ΔldhA/pCRB204 was fivefold higher than that of C. glutamicum ΔldhA/pCRB201. By using C. glutamicum ΔldhA/pCRB204 cells packed to a high density in mineral salts medium, up to 1,336 mM (120 g l−1) of d-lactic acid of greater than 99.9% optical purity was produced within 30 h.  相似文献   

14.
The metabolism of (–)-quinate and shikimate by one heterofermentative strain,actobacillus pastorianus, and by one homofermentative strain,Lactobacillus plantarum, has been studied using growing and washed cells. Both organisms reduced quinate and shikimate under anaerobic conditions in the presence of suitable hydrogen donors including fructose, glucose andd(–) andl(+)-lactates. The end-product ofL.pastorianus metabolism was dihydroshikimate butL.plantarum carried the reduction a stage further tocis-3,4-dihydroxycyclohexanecarboxylate and formed, simultaneously, catechol. The enzymes involved in these reductions are induced; their importance in the metabolism of lactobacilli is discussed.  相似文献   

15.
Eighty-nine strains representing the genus Carnobacterium, Enterococcus durans, Vagacoccus salmoninarum and atypical Lactobacillus strains MT12 and MT13 were examined for 92 unit characters. Computer analysis of the data resulted in the recovery of four major, five minor and thirteen single membered clusters. Three cluster-groups contained seventy-four of the Carnobacterium strains, Enterococcus durans NCFB 596T and Lactobacillus maltaromicus NCFB 2382T. Cluster-group A was equated with Carnobacterium piscicola and cluster-group B with Carnobacterium divergens. Lactobacillus maltaromicus NCFB 2382T shared many properties in common with the C. piscicola strains. The recovery of several Carnobacteriumstrains as single membered clusters suggests that the genus Carnobacterium is underspeciated. Further work is also required to determine the subspecific structure of Carnobacterium divergens and Carnobacterium piscicola.  相似文献   

16.
Fourteen strains of lactobacilli isolated from the rumen of young calves were studied to determine their biochemical characteristics, growth parameters, metabolism on lactose and sensitivity to 28 antimicrobial agents. Thirteen homofermentative strains belonged to Lactobacillus acidophilus and one heterofermentative strain resembled Lact. fermentum. The relevance of rumen lactobacilli to the nutrition of calves is discussed.  相似文献   

17.
In order to achieve direct fermentation of an optically pure d-lactic acid from cellulosic materials, an endoglucanase from a Clostridium thermocellum (CelA)-secreting plasmid was introduced into an l-lactate dehydrogenase gene (ldhL1)-deficient Lactobacillus plantarum (∆ldhL1) bacterial strain. CelA expression and its degradation of β-glucan was confirmed by western blot analysis and enzyme assay, respectively. Although the CelA-secreting ∆ldhL1 assimilated cellooligosaccharides up to cellohexaose (although not cellotetraose), the main end product was acetic acid, not lactic acid, due to the conversion of lactic acid to acetic acid. Cultivation under anaerobic conditions partially suppressed this conversion resulting in the production of 1.27 g/l of D-lactic acid with a high optical purity of 99.5% from a medium containing 2 g/l of cellohexaose. Subsequently, D-lactic acid fermentation from barley β-glucan was carried out with the addition of Aspergillus aculeatus β-glucosidase produced by recombinant Aspergillus oryzae and 1.47 g/l of D-lactic was produced with a high optical purity of 99.7%. This is the first report of direct lactic acid fermentation from β-glucan and a cellooligosaccharide that is a more highly polymerized sugar than cellotriose.  相似文献   

18.
Fourteen strains of lactobacilli isolated from the rumen of young calves were studied to determine their biochemical characteristics, growth parameters, metabolism on lactose and sensitivity to 28 antimicrobial agents. Thirteen homofermentative strains belonged to Lactobacillus acidophilus and one heterofermentative strain resembled Lact. fermentum. The relevance of rumen lactobacilli to the nutrition of calves is discussed.  相似文献   

19.
Four cocoa-specific acetic acid bacterium (AAB) strains, namely, Acetobacter pasteurianus 386B, Acetobacter ghanensis LMG 23848T, Acetobacter fabarum LMG 24244T, and Acetobacter senegalensis 108B, were analyzed kinetically and metabolically during monoculture laboratory fermentations. A cocoa pulp simulation medium (CPSM) for AAB, containing ethanol, lactic acid, and mannitol, was used. All AAB strains differed in their ethanol and lactic acid oxidation kinetics, whereby only A. pasteurianus 386B performed a fast oxidation of ethanol and lactic acid into acetic acid and acetoin, respectively. Only A. pasteurianus 386B and A. ghanensis LMG 23848T oxidized mannitol into fructose. Coculture fermentations with A. pasteurianus 386B or A. ghanensis LMG 23848T and Lactobacillus fermentum 222 in CPSM for lactic acid bacteria (LAB) containing glucose, fructose, and citric acid revealed oxidation of lactic acid produced by the LAB strain into acetic acid and acetoin that was faster in the case of A. pasteurianus 386B. A triculture fermentation with Saccharomyces cerevisiae H5S5K23, L. fermentum 222, and A. pasteurianus 386B, using CPSM for LAB, showed oxidation of ethanol and lactic acid produced by the yeast and LAB strain, respectively, into acetic acid and acetoin. Hence, acetic acid and acetoin are the major end metabolites of cocoa bean fermentation. All data highlight that A. pasteurianus 386B displayed beneficial functional roles to be used as a starter culture, namely, a fast oxidation of ethanol and lactic acid, and that these metabolites play a key role as substrates for A. pasteurianus in its indispensable cross-feeding interactions with yeast and LAB during cocoa bean fermentation.  相似文献   

20.
Optically pure d-lactic acid was produced by fermentation of lactose with Lactobacillus bulgaricus Lb-12, and purified by crystallisation as magnesium d-lactate followed by extraction with butanol. The yield of d-lactate and contaminations with nitrogen and phosphorus were mapped during the purification procedure. The overall yield of d-lactic acid was 72% and the purity was more than 99%. Contaminations in the final d-lactic acid with nitrogen, phosphorus and l-lactic acid were only 0.032% w/w, 0.018% w/w and 0.04% w/w respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号