首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High altitude increases pulmonary arterial pressure (PAP), but no measurements have been made in humans above 4,500 m. Eight male athletic volunteers were decompressed in a hypobaric chamber for 40 days to a barometric pressure (PB) of 240 Torr, equivalent to the summit of Mt. Everest. Serial hemodynamic measurements were made at PB 760 (sea level), 347 (6,100 m), and 282/240 Torr (7,620/8,840 m). Resting PAP and pulmonary vascular resistance (PVR) increased from sea level to maximal values at PB 282 Torr from 15 +/- 0.9 to 34 +/- 3.0 mmHg and from 1.2 +/- 0.1 to 4.3 +/- 0.3 mmHg.l-1 X min, respectively. During near maximal exercise PAP increased from 33 +/- 1 mmHg at sea level to 54 +/- 2 mmHg at PB 282 Torr. Right atrial and wedge pressures were not increased with altitude. Acute 100% O2 breathing lowered cardiac output and PAP but not PVR. Systemic arterial pressure and resistance did not rise with altitude but did increase with O2 breathing, indicating systemic control differed from the lung circulation. We concluded that severe chronic hypoxia caused elevated pulmonary resistance not accompanied by right heart failure nor immediately reversed by O2 breathing.  相似文献   

2.
3.
As part of the American Medical Research Expedition to Everest in 1981, we measured hemoglobin concentration, red cell 2,3-diphosphoglycerate (2,3-DPG), Po2 at which hemoglobin is 50% saturated (P50), and acid-base status in expedition members at various altitudes. All measurements were made in expedition laboratories and, with the exception of samples from the South Col of Mt. Everest (8,050 m), within 2 h of blood collection. In vivo conditions were estimated from direct measurements of arterial blood gases and pH or inferred from base excess and alveolar PCO2. As expected, increased 2,3-DPG was associated with slightly increased P50, when expressed at pH 7.4. Because of respiratory alkalosis, however, the subjects' in vivo P50 at 6,300 m (27.6 Torr) was slightly less than at sea level (28.1 Torr). The estimated in vivo P50 was progressively lower at 8,050 m (24.9 Torr) and on the summit at 8,848 m (19.4 Torr in one subject). Our data suggest that, at extreme altitude, the blood O2 equilibrium curve shifts progressively leftward because of respiratory alkalosis. This left shift protects arterial O2 saturation at extreme altitude.  相似文献   

4.
Eight normal subjects were decompressed to barometric pressure (PB) = 240 Torr over 40 days. The ventilation-perfusion (VA/Q) distribution was estimated at rest and during exercise [up to 80-90% maximal O2 uptake (VO2 max)] by the multiple inert gas elimination technique at sea level and PB = 428, 347, 282, and 240 Torr. The dispersion of the blood flow distribution increased by 64% from rest to 281 W, at both sea level and at PB = 428 Torr (heaviest exercise 215 W). At PB = 347 Torr, the increase was 79% (rest to 159 W); at PB = 282 Torr, the increase was 112% (108 W); and at PB = 240 Torr, the increase was 9% (60 W). There was no significant correlation between the dispersion and cardiac output, ventilation, or pulmonary arterial wedge pressure, but there was a correlation between the dispersion and mean pulmonary arterial pressure (r = 0.49, P = 0.02). When abnormal, the VA/Q pattern generally had perfusion in lung units of zero or near zero VA/Q combined with units of normal VA/Q. Alveolar-end-capillary diffusion limitation of O2 uptake (VO2) was observed at VO2 greater than 3 l/min at sea level, greater than 1-2 l/min VO2 at PB = 428 and 347 Torr, and at higher altitudes, at VO2 less than or equal to 1 l/min. These results show variable but increasing VA/Q mismatch with long-term exposure to both altitude and exercise. The VA/Q pattern and relationship to pulmonary arterial pressure are both compatible with alveolar interstitial edema as the primary cause of inequality.  相似文献   

5.
Nocturnal periodic breathing at altitudes of 6,300 and 8,050 m   总被引:2,自引:0,他引:2  
Nocturnal periodic breathing was studied in eight well-acclimatized subjects living at an altitude of 6,300 m [barometric pressure (PB) 350-352 Torr] for 3-5 wk and in four subjects during one night at 8,050 m altitude (PB 281-285 Torr). The measurements at 6,300 m included tidal volume by inductance plethysmography, arterial O2 saturation by ear oximetry (calibrated by arterial blood samples), electrocardiogram (ECG), and electrooculogram. At 8,050 m, periodic breathing was inferred from the cyclical variation in heart rate obtained from a night-long ECG record. All subjects at 6,300 m altitude showed well-marked periodic breathing with apneic periods. Cycle length averaged 20.5 s with 7.9 s apnea. Minimal arterial O2 saturation averaged 63.4% corresponding to a PO2 of approximately 33 Torr, i.e., approximately 6 Torr lower than the normal value at rest during daytime. This was probably the most severe hypoxemia of the 24-h period. At 8,050 m altitude, the cycle length averaged 15.4 s, much longer than predicted by a theoretical model. Cyclical variations in heart rate caused by periodic breathing occurred in all subjects, but abnormal cardiac rhythms such as ventricular premature contractions were uncommon. The severe arterial hypoxemia caused by periodic breathing may be an important determinant of tolerance to these great altitudes.  相似文献   

6.
It is unclear whether dogs develop pulmonary hypertension (PH) at high altitude. Beagles from sea level were exposed to an altitude of 3,100 m (PB 525 Torr) for 12-19 mo and compared with age-matched controls remaining at low altitude of 130 m (PB 750 Torr). In beagles taken to high altitude as adults, pulmonary arterial pressures (PAP) at 3,100 m were 21.6 +/- 2.6 vs. 13.2 +/- 1.2 Torr in controls. Likewise, in beagles taken to 3,100 m as puppies 2.5 mo old, PAP was 23.2 +/- 2.1 vs. 13.8 +/- 0.4 Torr in controls. This PH reflected a doubling of pulmonary vascular resistance and showed no progression with time at altitude. Pulmonary vascular reactivity to acute hypoxia was also enhanced at 3,100 m. Inhibition of prostaglandin synthesis did not attenuate the PH or the enhanced reactivity. Once established, the PH was only partially reversed by acute relief of chronic hypoxia, but reversal was virtually complete after return to low altitude. Hence, beagles do develop PH at 3,100 m of a severity comparable to that observed in humans at the same or even higher altitudes.  相似文献   

7.
Recent measurements at extreme altitude and in low pressure chamber simulations have clarified the human responses to extreme hypoxia. Man can only tolerate the severe oxygen deprivation of great altitudes by an enormous increase in ventilation which has the advantage of defending the alveolar PO2 against the reduced inspired PO2. Nevertheless the arterial PO2 on the Everest summit is less than 30 Torr (1 Torr = 133.3 Pa). An interesting consequence of the hyperventilation is that the respiratory alkalosis greatly increases the oxygen affinity of the hemoglobin and assists in oxygen loading by the pulmonary capillary. The severe hypoxemia impairs the function of many organ systems including the central nervous system, and there is evidence of residual impairment of memory and manipulative skill in climbers returning from great altitudes. At the altitude of Mt. Everest, maximal oxygen uptake is reduced to 20-25% of its sea level value, and it is exquisitely sensitive to barometric pressure. It is likely that the seasonal variation of barometric pressure affects the ability of man to reach the summit without supplementary oxygen.  相似文献   

8.
By measuring ventilation during isocapnic progressive hypoxia, peripheral chemoreceptor sensitivity to acute hypoxia (deltaV40) was measured in five normal young men under four sets of conditions: 1) at sea level at the subject's resting PCO2, 2) at sea level with PCO2 5 Torr above resting PCO2, 3) after 24 h at a simulated altitude of 4,267 m (PB = 447 Torr) at the subject's resting PCO2 measured during acute hyperoxia, and 4) after 24 h at high altitude, with PCO2 elevated to the subject's sea-level resting PCO2. With this experimental design, we were able to systematically vary the PCO2 and [H+] at the peripheral and central chemoreceptors of man. When mean pHa was decreased from 7.424 to 7.377 without significant change in PACO2, the mean deltaV40 increased from 18.0 to 55.9 1/min. Conversely, when mean PACO2 was altered between 33.8 and 41.6 Torr with pHa held relatively constant, the mean deltaV40 did not change. This suggests that it is the H+ and not CO2 which interacts with hypoxia in stimulating the ventilation of man. An additional finding was that the intrinsic sensitivity of the peripheral chemoreceptors to acute hypoxia did not change during 24 h of acclimatization to high altitude.  相似文献   

9.
In six healthy male volunteers at sea level (PB 747-759 Torr), we measured pH and PCO2 in cerebrospinal fluid (CSF), and in arterial and jugular bulb blood; from these data we estimated PCO2 (12) and pH for the intracranial portion of CSF. The measurements were repeated after 5 days in a hypobaric chamber (PB 447 Torr). Both lumbar and intracranial CSF were significantly more alkaline at simulated altitude than at sea level. Decrease in [HCO3-] IN lumbar CSF at altitude was similar to that in blood plasma. Both at sea level and at high altitude, PCO2 measured in the lumbar CSF was higher than that estimated for the intracranial CSF. At altitude, hyperoxia, in comparison with breathing room air, resulted in an increase in intracranial PCO2, and a decrease in the estimated pH in intracranial CSF. With hyperoxia at altitude, alveolar ventilation was significantly higher than during sea-level hyperoxia or normoxia, confirming that a degree of acclimatization had occurred. Changes in cerebral arteriovenous differences in CO2, measured in three subjects, suggest that cerebral blood flow may have been elevated after 5 days at altitude.  相似文献   

10.
Our aim was to test the hypothesis that the occurrence of extrasystoles in higher decennia is proportional to the altitude. The occurrence of supraventricular (SVPB) and ventricular (VEB) extrasystoles, values of systolic and diastolic blood pressure and the heart rate were studied in 20 healthy elderly men (50-64 years) during cable cabin transportation to a moderate altitude. These values were measured in stations located at 898 m, 1764 m, and 2632 m above sea level during the transportation in both directions. Our records show that the values of blood pressure and heart rate were within normal limits during the whole period of transportation. Both SVPB and VEB were increasing during the ascent and decreasing to the initial values during the descent compared to the values at altitude of 898 m. The highest values (6 to 7-times exceeding the initial ones) were measured at the summit. The results have demonstrated that the occurrence of SVPB and VEB is proportional to the altitude. The increased incidence in the number of extrasystoles is suggested to be mediated by beta-adrenoceptors.  相似文献   

11.
分析了长白山北坡垂直样带3种典型原始森林地表凋落物及不同粒径土壤组分中有机质的δ13C值,并将在岳桦林样地(EB,海拔1996 m)采集的20 cm土柱分别置换到云冷杉林(SF,海拔1350 m)和阔叶红松林(PB,海拔740 m),云冷杉林样地采集的土柱置换到阔叶红松林中,进行为期1年的野外模拟增温试验.结果表明:3种林型土壤的δ13C值均显著高于凋落物的δ13C值,凋落物和土壤有机质中的δ13C值由地表凋落物向土壤下层逐渐增加,而土壤粒径中有机质的δ13C值随粒径减小而增大.3种林型中,凋落物δ13C值变化趋势为云冷杉林(-28.3‰)>阔叶红松林(-29.0‰)>岳桦林(-29.6‰),而土壤有机质的δ13C值变化趋势为岳桦林(-25.5‰)>阔叶红松林(-25.8‰)>云冷杉林(-26.2‰).在土壤温度增加0.7 ℃~2.9 ℃条件下,土壤及其各粒级的δ13C值均呈下降趋势,而且<2 μm粘粒和2~63 μm粉粒δ13C值的降幅(0.48‰和0.47‰)高于>63 μm砂粒δ13C值的降幅(0.33‰).未来气候变暖可能对储藏在细小颗粒中年龄较长的有机碳带来较大的影响.  相似文献   

12.
The cause of headache in persons going to high altitude is unknown. Relatively severe hypoxemia in susceptible subjects could induce large increases in cerebral blood flow that then could initiate the headache. Thus we measured noninvasively, by Doppler ultrasound, changes in internal carotid arterial blood velocity (velocity) in 12 subjects in Denver (1,600 m) and repeatedly up to 7 h at a simulated altitude of 4,800 m (barometric pressure = 430 Torr). Six subjects, selected because of prior history of high-altitude headache, developed comparatively severe headache at 4,800 m, and four subjects, without such history, remained well. Two subjects developed moderate headache. Velocity at 4,800 m did not correlate with symptom development, arterial O2 saturation, or end-tidal PCO2. Also, neither velocity nor blood pressure was consistently elevated above the Denver base-line values. During measurements of hypercapnic ventilatory response in Denver, velocity increased linearly with end-tidal PCO2, confirming that our Doppler method could demonstrate an increase. Also, 30 min of isocapnic or poikilocapnic hypoxia caused small increases in velocity (+8 and +6%) during the base-line measurement at low altitude. Although even a small increase in cerebral perfusion could contribute to headache symptoms at high altitude, cerebral blood flow does not appear to play a primary role.  相似文献   

13.
The effect of acute hypobaric hypoxia on local sweating and cutaneous blood flow was studied in four men and four women (follicular phase of menstrual cycle), who exercised at 60% of their altitude-specific peak aerobic power for 35 min at barometric pressures (PB) of 770 Torr (sea level), 552 Torr (2,596 m), and 428 Torr (4,575 m) at an ambient temperature of 30 degrees C. We measured esophageal temperature (Tes), mean skin temperature (Tsk, 8 sites), and local sweating (ms) from dew-point sensors attached to the skin at the chest, arm, and thigh. Skin blood flow (SkBF) of the forearm was measured once each minute by venous occlusion plethysmography. There were no gender differences in the sensitivity (slope) or the threshold of either ms/Tes or SkBF/Tes at any altitude. No change in the Tes for sweating onset occurred with altitude. The mean slopes of the ms/Tes relationships for the three regional sites decreased with increasing altitude, although these differences were not significant between the two lower PBS. The slope of SkBF/Tes was reduced in five of the eight subjects at 428 Torr. Enhanced body cooling as a response to the higher evaporative capacity of the environment is suggested as a component of these peripheral changes occurring in hypobaric hypoxia.  相似文献   

14.
The present study was designed to provide further insight into the role of the carotid and aortic chemoreceptors in ventilatory (VE) acclimatization during sojourn at altitude. Measurements were made: 1) on 10 ponies near sea level (SL, 740 Torr) under normal conditions, 2) on 6 of these at SL following chemoreceptor denervation (CD), and 3) subsequently on all 10 during 4 days of hypobaric hypoxia (PaO2 = 40-47 Torr). CD resulteo in hypoventilation at SL (deltaPaCO2 = d8 Torr, P less than 0.05), and it prevented hyperventilation normally observed with injection of NaCN and acute exposure to hypoxia (less than 1 h). In contrast, hyperventilation was evident in normal ponies during acute hypoxia (deltaPaCO2 = -6.7 Torr). Ventilation increased in both groups between the 2nd and 8th h of hypoxia (deltaPaCO2 from 1 h = -4 Torr, P less than 0.05). This change, a common characteristic of acclimatization, persisted throughout 4 days of hypoxia in the normal ponies. However, in the CD ponies this change was evident consistently only through the 12th h and after the 44 h hyperventilation was no longer evident. We conclude that the peripheral chemoreceptors are essential in ponies for normal VE acclimatization to this degree of hypoxemia. Two additional findings in CD ponies suggest the presence of a CNS inhibitory influence on the VE control center during chronic hypoxemia. First, acute hyperoxygenation on the 4th day of hypoxemia induced hyperventilation (deltaPaCO2 = -5 Torr, P less than 0.05). Second, again on the 4th day and during hyperoxygenation, VE responsiveness to CO2 and doxapram HCl was greater than at sea level.  相似文献   

15.
We measured common carotid blood flow using a range gated Doppler velocimeter, and internal and external blood velocities using a continuous Doppler in 20 lowlanders at sea level, under normal barometric pressure, in 10 subjects in an altitude chamber under a barometric pressure of 462 Torr (61.6 KPa) and then in 5 of them over a 3-weeks period at 3850 m of elevation (475 Torr = 63.3 KPa). The same measurements were also performed in 20 permanent residents at 3850 m. Common carotid blood flow was 15% higher in all subjects exposed to high altitude, due to a lowering in downstream resistances since systemic blood pressure did not change at high altitude. The increase in common carotid blood flow was the result of an immediate increase in internal carotid blood velocities observed in the altitude chamber as well as after the arrival at high altitude, but a few days later those velocities in the internal carotid artery declined to values similar to those observed at sea level. In the same time velocities in external carotid artery rose at high altitude, remained steadily elevated and the result is a permanent increase in common carotid blood flow at altitude. In all subjects we performed the same measurements, during an acute inhalation of gas mixtures to try to quantify the mechanisms controlling the changes in common carotid blood flow while changing gas inhalation. In the limits of the variations in PO2 (60 to 400 Torr) and in PCO2 (30 to 50 Torr) the stimulation by CO2 is twice more efficient than the O2 stimulation on vasomotion.  相似文献   

16.
Weight loss is a well-known phenomenon at high altitude. It is not clear whether the negative energy balance is due to anorexia only or an increased energy expenditure as well. The objective of this study was to gain insight into this matter by measuring simultaneously energy intake, energy expenditure, and body composition during an expedition to Mt. Everest. Subjects were two women and three men between 31 and 42 yr of age. Two subjects were observed during preparation at high altitude, including a 4-day stay in the Alps (4,260 m), and subsequently during four daytime stays in a hypobaric chamber (5,600-7,000 m). Observations at high altitude on Mt. Everest covered a 7- to 10-day interval just before the summit was reached in three subjects and included the summit (8,872 m) in a fourth. Energy intake (EI) was measured with a dietary record, average daily metabolic rate (ADMR) with doubly labeled water, and resting metabolic rate (RMR) with respiratory gas analysis. Body composition was measured before and after the interval from body mass, skinfold thickness, and total body water. Subjects were in negative energy balance (-5.7 +/- 1.9 MJ/day) in both situations, during the preparation in the Alps and on Mt. Everest. The loss of fat mass over the observation intervals was 1.4 +/- 0.7 kg, on average two-thirds of the weight loss (2.2 +/- 1.5 kg), and was significantly correlated with the energy deficit (r = 0.84, P < 0.05). EI on Mt. Everest was 9-13% lower than during the preparation in the Alps.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Pulmonary gas exchange and acid-base state were compared in nine Danish lowlanders (L) acclimatized to 5,260 m for 9 wk and seven native Bolivian residents (N) of La Paz (altitude 3,600-4,100 m) brought acutely to this altitude. We evaluated normalcy of arterial pH and assessed pulmonary gas exchange and acid-base balance at rest and during peak exercise when breathing room air and 55% O2. Despite 9 wk at 5,260 m and considerable renal bicarbonate excretion (arterial plasma HCO3- concentration = 15.1 meq/l), resting arterial pH in L was 7.48 +/- 0.007 (significantly greater than 7.40). On the other hand, arterial pH in N was only 7.43 +/- 0.004 (despite arterial O2 saturation of 77%) after ascent from 3,600-4,100 to 5,260 m in 2 h. Maximal power output was similar in the two groups breathing air, whereas on 55% O2 only L showed a significant increase. During exercise in air, arterial PCO2 was 8 Torr lower in L than in N (P < 0.001), yet PO2 was the same such that, at maximal O2 uptake, alveolar-arterial PO2 difference was lower in N (5.3 +/- 1.3 Torr) than in L (10.5 +/- 0.8 Torr), P = 0.004. Calculated O2 diffusing capacity was 40% higher in N than in L and, if referenced to maximal hyperoxic work, capacity was 73% greater in N. Buffering of lactic acid was greater in N, with 20% less increase in base deficit per millimole per liter rise in lactate. These data show in L persistent alkalosis even after 9 wk at 5,260 m. In N, the data show 1) insignificant reduction in exercise capacity when breathing air at 5,260 m compared with breathing 55% O2; 2) very little ventilatory response to acute hypoxemia (judged by arterial pH and arterial PCO2 responses to hyperoxia); 3) during exercise, greater pulmonary diffusing capacity than in L, allowing maintenance of arterial PO2 despite lower ventilation; and 4) better buffering of lactic acid. These results support and extend similar observations concerning adaptation in lung function in these and other high-altitude native groups previously performed at much lower altitudes.  相似文献   

18.
Venoconstriction occurs at high altitude. This study sought to determine whether hypoxia or hypocapnia is the cause of the venoconstriction. Five male subjects were exposed to 4,000-4,400 m (PB 440-465 mmHg) with supplemental 3.77 +/- 0.02% CO2 in a hypobaric chamber for 4 days. Similar alveolar O2 tensions were obtained in four control subjects exposed to 3,500-4,100 m (PB 455-492 mmHg) without CO2. A water-filled plethysmograph was used to determine forearm flow and venous compliance. Systemic blood pressure was measured with the cuff procedure. Catecholamines were measured in 24-h urine collections. Venous compliance fell at high altitude in both groups and was less (P less than 0.01) than control values. Forearm flow and resistance were unaltered at altitude in the group with CO2 supplementation while forearm flow decreased and resistance increased in the hypocapnic group at 72 h of exposure. Urinary catecholamines increased in the group with CO2 and remained unaltered in the hypocapnic group. It is concluded that hypoxia is responsible for decreasing venous compliance, and hypocapnia for increasing resistance and decreasing flow. Group differences observed in urinary catecholamines may be explained by differences in arterial pH.  相似文献   

19.
West, John B. Prediction of barometric pressures athigh altitudes with the use of model atmospheres. J. Appl. Physiol. 81(4): 1850-1854, 1996.It wouldbe valuable to have model atmospheres that allow barometric pressures(PB) to bepredicted at high altitudes. Attempts to do this in the past using theInternational Civil Aviation Organization or United StatesStandard Atmosphere model have brought such models into disreputebecause the predicted pressures at high altitudes are usually much toolow. However, other model atmospheres have been developed bygeophysicists. The critical variable is the change of air temperaturewith altitude, and, therefore, model atmospheres have been constructedfor different latitudes and seasons of the year. These different modelsgive a large range of pressures at a given altitude. For example, the maximum difference of pressure at an altitude of 9 km is from 206 to248 Torr, i.e., ~20%. However, the mean of the model atmospheres forlatitude of 15° (in all seasons) and 30° (in thesummer) predicts PB at manylocations of interest at high altitude very well, with predictionswithin 1%. The equation is PB(Torr) = exp (6.63268  0.1112 h  0.00149 h2), where h is the altitude inkilometers. The predictions are good because many high mountain sitesare within 30° of the equator and also many studies are made duringthe summer. Other models should be used for latitudes of 45° andabove. Model atmospheres have considerable value in predictingPB at high altitude if proper account is taken of latitude and season of the year.

  相似文献   

20.
Critical environmental limits, defined as those above which heat balance cannot be maintained for a given metabolic heat production, have not been determined for unacclimated subjects. To characterize critical environmental limits and to derive evaporative heat exchange coefficients (K(e)') for unacclimated young men (n = 11) and women (n = 10), subjects of average aerobic fitness walked at 30% maximal aerobic capacity in an environmental chamber. Critical environmental conditions were defined as the psychrometric loci of dry-bulb temperature and water vapor pressure at which core (esophageal) temperature was forced out of equilibrium (heat gain exceeded heat loss). Compared with the men in our study, the women had significantly higher critical environmental limits (P < 0.001) in warm (34-38 degrees C), humid (>60%) environments, a function of their lower absolute metabolic heat production at the fixed relative exercise intensity. Isotherms constructed from biophysical models closely fit the data in this range of environments but underestimated empirically determined critical limits in hotter, drier environments. Sex-specific values of K(e)' were derived by partial calorimetry in the critical water vapor pressure environments, in which full skin wettedness occurred. There were no sex differences for K(e)' (men = 17.4, 15.5, and 14.2 W. m(-2). Torr(-1) and women = 16.8, 15.5, and 14.2 W. m(-2). Torr(-1) at 34, 36, and 38 degrees C, respectively). These K(e)' values were lower than those previously published for fully heat-acclimated men (18.4 W. m(-2). Torr(-1) at 36 degrees C) and women (17.7 W. m(-2). Torr(-1) at 36 degrees C and 15.5 W. m(-2). Torr(-1) at 38 degrees C) and may be used to model heat balance responses for unacclimated men and women working in hot environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号