首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High performance liquid chromatography of platelet-activating factors   总被引:4,自引:0,他引:4  
Silica and C18 reverse phase high performance liquid chromatography (HPLC) were used to fractionate synthetic molecular species of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (AGEPC) and semi-synthetic platelet-activating factor (PAF) synthesized from beef heart plasmalogens. A single coincident peak from silica HPLC was observed for either a mixture of synthetic AGEPC's with alkyl chain lengths from C12 to C18 or for beef heart-derived PAF. This peak was well separated from other classes of phospholipid standards including 2-lysophosphatidylcholine and 3H-labeled lyso-PAF. Subsequently, the synthetic AGEPC mixture or beef heart PAF was separated into individual species on a C18 reverse phase column. Beef heart-derived PAF was fractionated into at least four molecular species of PAF activity which had similar retention times as the radioactivity of 3H-labeled beef heart PAF. Approximately 56% of the radioactivity of 3H-labeled PAF was found in the fraction with a similar retention time as 1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine, 10% as 1-O-octadecyl-2-acetyl-sn-glycero-3-phosphocholine, 11% as 1-O-pentadecyl-2-acetyl-sn-glycero-3-phosphocholine, and 13% in an unidentified fraction which eluted after C-16-AGEPC. The unidentified fraction did not correspond to any of the homologous series of synthetic AGEPCs with saturated alkyl chain lengths from C12 to C18. Recoveries of radioactive phospholipids from silica or reverse phase columns were greater than 95%.  相似文献   

2.
RP and SP isomers of 1-O-hexadecyl-2-acetyl-3-thiophosphocholine (AGEPsC) have been synthesized. The activity of these isomers in platelet aggregation and serotonin secretion was compared with that of 1-O-hexadecyl-2-acetyl-3-phosphocholine (AGEPC). The results show that (SP)-AGEPsC has the same activity as AGEPC within experimental error in both assays. The RP isomer, however, is only 0.6-2% as active as AGEPC in platelet aggregation and serotonin release. The results suggest that the phosphate group of AGEPC is likely to be involved in the interactions with its receptor, at least in the events leading to platelet aggregation and secretion.  相似文献   

3.
Two species of platelet-activating factor (PAF), 1-hexadecyl- and 1-octadecyl-2-acetyl-sn-glycero-3-phosphocholine (C16 = 0 AGEPC and C18 = 0 AGEPC) were detected in ionophore A23187-stimulated human neutrophils. The amount of AGEPC in 1 x 10(7) neutrophil cells was 80 +/- 26 pmol (mean +/- standard error) with a range of 14 to 223 pmol (n = 8), and it consisted of 80% of the C16 = 0 species and 20% of the C18 = 0 species. Most of the AGEPC derived from ionophore-treated neutrophils remained cell associated rather than being secreted into the medium, even when the medium contained ample albumin protein, which can trap AGEPC. These results were obtained by a technique of gas chromatography-mass spectrometry coupled with selected ion monitoring.  相似文献   

4.
The selected ion monitoring (SIM) technique was applied to determination of platelet-activating factor (PAF) or acetyl glyceryl ether phosphorylcholine (AGEPC). Two types of PAF, 1-hexadecyl- and 1-octadecyl-2-acetyl-sn-glyceryl-3-phosphorylcholine (C16 = 0 AGEPC and C18 = 0 AGEPC), were found in human neutrophils on the challenge with ionophore A23187. The contents of C16 = 0 AGEPC in 1 X 10(7) neutrophil cells of four volunteers, respectively, were 47, 18, 59, and 73 ng and those of C18 = 0 AGEPC were 22, 4, 19, and 31 ng.  相似文献   

5.
Platelet-activating factor (1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine (AGEPC)) is a potent lipid mediator which stimulates hepatic glycogenolysis, causes hepatic vasoconstriction, and stimulates the production of cyclooxygenase-derived metabolites of arachidonic acid, primarily prostaglandin (PG) D2 in the perfused liver. Following infusion of platelet-activating factor (1 nM) in the perfused rat liver the production of PGD2, measured in the effluent perfusate, increased 4-fold after only 2 min. Infusion of the cyclooxygenase inhibitor, ibuprofen (50 microM), abolished the stimulated production of PGD2 and thromboxane B2 in response to AGEPC without significantly affecting the hepatic glycogenolytic or vasoconstrictive responses to AGEPC. Contrary to previous reports, these observations do not support the suggestion that cyclooxygenase-derived metabolites mediate directly either the glycogenolytic or the vasoactive effects of AGEPC in the perfused rat liver.  相似文献   

6.
A convenient sequence for the synthesis of 1-O-alkyl-2-O-alkyl'-sn-glycero-3-phospholipids was demonstrated starting from 2,3-O-isopropylidene-sn-glycerol, which was first alkylated with 1-bromohexadecane, then converted to the corresponding benzylidene analog. Other less convenient methods to prepare 2,3-O-benzylidene-1-O-hexadecyl-sn-glycerol were also investigated. The key step in the synthesis was the reduction of 2,3-O-benzylidene-1-O-hexadecyl-sn-glycerol with lithium aluminum hydride-aluminum chloride to give 3-O-benzyl-1-O-hexadecyl-sn-glycerol as the major product in 79% yield. The syntheses of 1-O-hexadecyl-2-O-hexadecyl-(1',1'-d2,-sn-glycero-3-phosphoethanolamine and 1-O-hexadecyl-2-O-hexadecyl-(1'-13C)-sn-glycero-3-phosphoethanolamine as well as the correspondingly labeled sn-glycero-3-phosphocholine analogs were then performed. The optical purities of the synthetic intermediates and the ether lipids were established by a novel 1H-NMR method.  相似文献   

7.
In a study designed to explore the physical chemical characteristics of platelet activating factor (PAF), or 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine, the critical micellar concentration of this compound, as well as the propionyl, butyryl and hexanoyl homologs was determined. In addition, an analogous series of compounds, in which the 1-O-alkyl was replaced by a 1-O-hexadecanoyl or a 1-O-octadecanoyl group, were examined for their critical micellar concentration. A variety of analytical techniques including NMR, gas liquid chromatography, infra-red spectrometry, thin layer chromatography, phosphorus, choline, glyceryl ether and fatty acid analyses were used to confirm the high purity of the individual derivatives. A dye binding assay and a surface tension technique were compared as to their suitability for determination of the critical micellar concentration of these compounds. Whereas the dye binding method proved highly variable, the surface tension procedure proved to be a facile, reproducible technique and was the assay of choice. The critical micellar concentration of the 1-O-alkyl and the 1-O-acyl derivatives showed comparable values for each short chain substituent at carbon 2, with values, in microM, ranging from 1.3 +/- 0.03 for 1-O-hexadecanoyl-2-acetyl-sn-glycero-3-phosphocholine and 1.1 +/- 0.10 for 1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine to 0.22 +/- 0.01 for 1-O-hexadecanoyl-2-hexanoyl-sn-glycero-3-phosphocholine and 0.18 +/- 0.03 for 1-O-hexadecyl-2-hexanoyl-sn-glycero-3-phosphocholine. The data show that at the molar concentration usually employed in biological studies with these compounds, i.e., 1 X 10(-7) to 10(-11) M, one can assume that they will be present as monomolecular species. Thus, it seems unlikely that the widely diverse biological activities of these compounds can be explained by this physical parameter.  相似文献   

8.
The platelet-activating factor (PAF) family of glycerophospholipids accumulates in damaged brain tissue following injury. Little is known about the role of individual isoforms in regulating neuronal survival. Here, we compared the neurotoxic and neuroprotective activities of 1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine (C(16)-PAF) and 1-O-octadecyl-2-acetyl-sn-glycero-3-phosphocholine (C(18)-PAF) in cerebellar granule neurons. We find that both C(16)-PAF and C(18)-PAF cause PAF receptor-independent death but signal through different pathways. C(16)-PAF activates caspase-7, whereas C(18)-PAF triggers caspase-independent death in PAF receptor-deficient neurons. We further show that PAF receptor signaling is either pro- or anti-apoptotic, depending upon the identity of the sn-1 fatty acid of the PAF ligand. Activation of the PAF G-protein-coupled receptor (PAFR) by C(16)-PAF stimulation is anti-apoptotic and inhibits caspase-dependent death. Activation of PAFR by C(18)-PAF is pro-apoptotic. These results demonstrate the importance of the long-chain sn-1 fatty acid in regulating PAF-induced caspase-dependent apoptosis, caspase-independent neurodegeneration, and neuroprotection in the presence or absence of the PAF receptor.  相似文献   

9.
1-O-Hexadecyl-2-O-acetyl-sn-glycero-3-phosphocholine (platelet activating factor) stimulated the degranulation of rabbit platelets and human neutrophils, whereas the enantiomer, 3-O-hexadecyl-2-O-acetyl-sn-glycero-1-phosphocholine, was inactive. The analogs compared had the following relative potencies in degranulating platelets and neutrophils: 1-O-hexadecyl-2-O-acetyl-sn-glycero-3-phosphocholine > 1-O-hexadecyl-2-O-ethyl-sn-glycero-3-phosphocholine >rac-1-O-octadecyl-2-O-ethylglycero-3-phosphocholine = 1-O-hexadecyl-2-O-methyl-sn-glycero-3-phosphocholine >rac-1-O-dodecyl-2-O-ethyl-glycero-3-phosphocholine. The deacetylated compound, 1-O-hexadecyl-2-lyso-sn-glycero-3-phosphocholine, and 1-O-hexadecyl-2,2-dimethylpropanediol-3-phosphocholine were inactive. The active analogs selectively desensitized the response to each other in the neutrophils. It is suggested that these compounds may activate cells through interaction with a stereospecific receptor.  相似文献   

10.
One approach to the quantitative analysis of platelet activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycerol-3-phosphocholine; also referred to as AGEPC, alkyl glyceryl ether phosphocholine) is hydrolytic removal of the phosphocholine group and conversion to an electron-capturing derivative for gas chromatography-negative ion mass spectrometry. [2H3]Acetyl-AGEPC has been commonly employed as an internal standard. When 1-hexadecyl-2-[2H3]acetyl glycerol (obtained by enzymatic hydrolysis of [2H3]-C16:0 AGEPC) is treated with pentafluorobenzoyl chloride at 120 degrees C, the resulting 3-pentafluorobenzoate derivative shows extensive loss of the deuterium label. This exchange is evidently acid-catalyzed since derivatization of 1-hexadecyl-2-acetyl glycerol under the same conditions in the presence of a trace of 2HCl results in the incorporation of up to three deuterium atoms. Isotope exchange can be avoided if the reaction is carried out at low temperature in the presence of base. Direct derivatization of [2H3]-C16:0 AGEPC by treatment with pentafluorobenzoyl chloride or heptafluorobutyric anhydride also results in loss of the deuterium label. The use of [13C2]-C16:0 AGEPC as an internal standard is recommended for rigorous quantitative analysis.  相似文献   

11.
Mobilization of hepatic calcium pools by platelet activating factor   总被引:2,自引:0,他引:2  
In the perfused rat liver, platelet activating factor, 1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine (AGEPC), infusion produces an extensive but transient glycogenolytic response which at low AGEPC concentrations (i.e., 10(-11) M) is markedly dependent upon the perfusate calcium levels. The role of calcium in the glycogenolytic response of the liver to AGEPC was investigated by assessing the effect of AGEPC on various calcium pools in the intact liver. Livers from fed rats were equilibrated with 45Ca2+, and the kinetics of 45Ca2+ efflux were determined in control, AGEPC-stimulated, and phenylephrine-stimulated livers during steady-state washout of 45Ca2+. AGEPC treatment had only a slight if any effect on the pattern of steady-state calcium efflux from the liver, as opposed to major perturbations in the pattern of calcium efflux effected by the alpha-adrenergic agonist phenylephrine. Infusion of short pulses of AGEPC during the washout of 45Ca2+ from labeled livers caused a transient release of 45Ca2+ which was not abolished at low calcium concentrations in the perfusate. Moreover, there occurred no appreciable increase in the total calcium content in the liver perfusate at either high or low concentrations of calcium in the perfusion fluid. Infusion of latex beads, which are removed by the reticuloendothelial cells, caused the release of hepatic 45Ca2+ in a fashion similar to the case with AGEPC. Our findings indicate that AGEPC does not perturb a major pool of calcium within the liver as occurs upon alpha-adrenergic stimulation; it is likely that AGEPC mobilizes calcium from a smaller yet very important pool, very possibly from nonparenchymal cells in the liver.  相似文献   

12.
Suspended or adherent human endothelial cells (HEC) treated with 5 to 100 nM 1-O-octadecyl-2-acetyl-sn-glycero-3-phosphocholine (AGEPC, platelet-activating factor) showed a marked concentration and temperature-dependent increase in calcium uptake. This effect was also elicited by some AGEPC analogs. At 10 nM, the relative potencies were AGEPC = 100; 1-O-octadecyl-2-acetyl-sn-glycero-3-phosphoric acid (AGEPA) = 52.9; 1-O-alkyl-2-acetyl-sn-glycero-3-phosphoethanolamine (AGEPE) = 20; 1-O-octadecyl-2-deoxy-2-acetamido-sn-glycero-3-phosphocholine (2-acetamido-analog)-inactive at 100 nM = 25; 1-octadecyl-2-methoxy-sn-glycero-3-phosphocholine(2-methoxy analog)-inactive, and at 100 nM = 50. 1-O-octadecyl-2-lyso-sn-glycero-3-phosphocholine(lyso-GEPC) (100 nM) was inactive. The increase in calcium uptake was accompanied by a rise in membrane-associated calcium. The ratio between nonmembrane-bound intracellular calcium and membrane-associated calcium was constant for all agonists. CV-3988, a specific AGEPC antagonist, inhibited the effect of AGEPC. Preexposure of adherent HEC to AGEPC inhibited calcium uptake upon subsequent stimulation, suggesting a deactivation of the putative receptor. AGEPC (5 to 100 nM), but not lyso-GEPC, also stimulated calcium-efflux from calcium-preloaded, adherent HEC. AGEPC and 2-acetamido-analog, at concentrations able to induce calcium influx, did not elicit the production of 6-keto-PGF1 alpha.  相似文献   

13.
Occurrence of platelet-activating factor in rabbit spermatozoa   总被引:1,自引:0,他引:1  
Spermatozoa obtained from rabbit ejaculate were analyzed for the presence of platelet-activating factor [PAF; 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (AGEPC)] by using standard HPLC and TLC procedures. Fractions corresponding to synthetic PAF (AGEPC) revealed PAF-like activity amounting to 0.35 +/- 0.06 pmol/10(8) cells (mean +/- SE) as determined by bioassays based on the release of [3H]serotonin from washed rabbit platelets. This activity was lost upon base-catalyzed methanolysis, but was restored to the original level after reacetylation. Analysis of the phosphatidylcholine (PC) fraction by GC-MS subsequent to base-catalyzed methanolysis showed that 1-O-alkyl-2-acylphosphocholine comprises about 12% of the PC fraction with alkyl chain lengths of 16:0 (88%) and 18:0 (12%).  相似文献   

14.
The beta-adrenergic agonist isoproterenol inhibited the glycogenolytic response of platelet-activating factor (AGEPC, 1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine) in perfused livers derived from fed rats. AGEPC-stimulated hepatic vasoconstriction, measured by increases in portal vein pressure, also was inhibited by prior isoproterenol infusion. Isoproterenol-mediated inhibition of these hepatic responses to AGEPC was not apparent when isoproterenol (10 microM) was coinfused with the beta-receptor antagonist propranolol (75 microM) or when isoproterenol was replaced with the alpha-adrenergic agonist phenylephrine (10 microM). alpha-Agonist-induced glycogenolysis and vasoconstriction in the perfused liver was unaffected by isoproterenol infusion. Glucagon (2.3 nM) had no effect on the glycogenolytic or vasoconstrictive responses of the liver to AGEPC despite the fact that glucagon increased hepatic cAMP levels to a far greater extent than isoproterenol. Additionally, inhibition of the hepatic responses to AGEPC by isoproterenol occurred in perfused livers from mature rats (i.e. greater than 300 g) in which liver parenchymal cells lack functional beta-adrenergic receptors. The data presented in this study illustrate a specific inhibition of AGEPC-induced hepatic glycogenolysis and vasoconstriction by beta-adrenergic stimulation of the perfused liver. This inhibition appears to be mediated by interaction of isoproterenol with nonparenchymal cells within the liver. These findings are consistent with the concept that AGEPC stimulates hepatic glycogenolysis by an indirect mechanism involving hepatic vasoconstriction.  相似文献   

15.
Two platelet-activating factor (PAF) analogs containing a methyl group at C2 of the glycerol moiety were synthesized, and some of their biochemical properties were investigated. 1-O-Hexadecyl-2-C,O-dimethyl-rac-glycero-3-phosphocholine (2-methyl-2-methoxy PAF) was prepared in a synthetic scheme beginning with the etherification of 2-methylpropen-1-ol. A reaction sequence involving hydroxylation, tritylation, alkylation, and detritylation afforded 1-O-hexadecyl-2-C,O-dimethyl-rac-glycerol, which was converted into the phosphocholine. A 2-lyso derivative of this PAF analog (2-methyl-lyso PAF) was synthesized from 1-O-hexadecyl-2-C-methyl-3-O-trityl-rac-glycerol. Benzylation followed by detritylation gave 1-O-hexadecyl-2-C-methyl-2-O-benzyl-rac-glycerol, which was converted into the phosphocholine compound. Hydrogenolysis afforded 1-O-hexadecyl-2-C-methyl-rac-glycero-3-phospholine (2-methyl-lyso PAF). The 2-methyl-lyso PAF analog served as a substrate for the acetyl-CoA-dependent acetyltransferase that acetylates 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine. However, 2-methyl-lyso PAF did not have a significant effect on the activities of a CoA-independent transacylase or of the acetylhydrolase that inactivates PAF, and thus does not appear to be a substrate or an inhibitor, respectively, for these enzymes. In addition, this analog exhibited only one-half of the antitumor activity of rac-1-O-alkyl-2-methoxy-rac-glycero-3-phosphocholine in human leukemic (HL-60) cells, and elicited no hypotensive response in rats and no platelet-activating activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The binding profile of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (AGEPC, platelet-activating factor) to washed rabbit platelets was investigated through the use of structural analogs of AGEPC, e.g. U66985, which specifically suppressed AGEPC biological activities on rabbit platelets. This interaction of AGEPC with platelets could be divided into three different components termed A, B, and C. Component A was considered as one of high affinity (Kd = 0.5 X 10(-9) M) and with a low capacity (about 400 sites/platelet). The binding of AGEPC to component A was reversible and was blocked by the inhibitory analogs of AGEPC. This was considered to be the AGEPC receptor site(s). Component B was irreversible in nature and was presumed to be associated with internalization of AGEPC. The latter process was sensitive to the structural inhibitors. Component C was not affected by the inhibitors and probably represented a nonspecific binding to the lipid layer of the membrane. The binding profile of 1-O-alkyl-2-(lyso)-sn-glycero-3-phosphocholine, a biologically inactive and noninhibitory analog of AGEPC, was observed to consist of a single component and was (also) unaffected by the inhibitors. Internalization of AGEPC into rabbit platelets was further examined by the bovine serum albumin extraction method, which was originally developed by Mohandas et al. (Mohandas, N., Wyatt, J., Mel, S. F., Rossi, M. E., and Shohet, S. B. (1982) J. Biol. Chem. 257, 6537-6543). AGEPC was instantly taken up by the cell and internalization into its membrane, where it remained and was not released into cytosol. The internalization of AGEPC was suppressed by pretreating the cells with AGEPC analogs. In platelets desensitized to AGEPC, no down-regulation of the receptor site(s) was observed. The internalization of AGEPC in the desensitized cells was clearly enhanced and this was obvious even in the presence of the AGEPC inhibitor(s). Even in the presence of the inhibitors, effective internalization of AGEPC was also evident in thrombin-treated cells. These results suggested that the internalization of AGEPC was irreversibly enhanced in the platelets which were activated by AGEPC itself as well as by thrombin.  相似文献   

17.
Specific binding of phospholipid platelet-activating factor by human platelets   总被引:11,自引:0,他引:11  
The binding of the phospholipid platelet-activating factor 1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphorylcholine (AGEPC) to washed human platelets was more than 80% complete within 2 min, which coincided with the time of initiation of platelet aggregation by AGEPC. Scatchard plot analysis of the binding of [3H]AGEPC to platelets without and with an excess of unlabeled AGEPC revealed two distinct types of binding sites. One platelet site for AGEPC exhibited a high affinity (KD = 37 +/- 13 nM, mean +/- SD), was saturable, and had a low maximal capacity of 1399 +/- 498 (mean +/- SD) molecules of AGEPC/platelet. The other platelet site demonstrated a nearly infinite binding capacity, consistent with nonreceptor uptake of AGEPC into cellular structures. The specificity of the high-affinity binding site for AGEPC was assessed by comparing the capacity of several analogues of AGEPC to inhibit the binding of [3H]AGEPC to platelets and to induce platelet aggregation. An ether linkage in position 1, a short-chain fatty acid in position 2, and a choline moiety in the polar head group proved to be critical both for the binding of [3H]AGEPC to platelets and for the initiation of platelet aggregation. Exposure of platelets to AGEPC for 5 min at 37 degrees C functionally deactivated the exposed platelets to subsequent stimulation by AGEPC, as assessed by diminished aggregation, and concomitantly reduced the specific binding of [3H]AGEPC. Evaluation of the time course of the events of deactivation revealed the loss of an aggregation response to AGEPC after 90 sec at 37 degrees C, despite the retention of up to 50% of the specific binding sites for AGEPC.  相似文献   

18.
1-O-Alkyl-2-acetyl-sn-glycero-3-phosphocholine (AGEPC) induced phosphorylation of two proteins having molecular masses of approximately 20- and 40-kDa in washed rabbit platelets in a concentration- and time-dependent manner. Sequential stimulation with AGEPC did not induce additional protein phosphorylation, supporting the concept of desensitization of the AGEPC receptors responsible for biological activity. AGEPC analogs 1-O-octadecyl-2-acetyl-sn-glycero-3-phosphoric acid-6'-trimethylammonium hexyl ester and 1-O-octadecyl-2-acetyl-sn-glycero-3-phosphoric acid-10'-trimethylammonium decyl ester (U66985 and U66982), containing polar head groups with methylene chain lengths of C6 and C10, did not cause protein phosphorylation, but they did inhibit the AGEPC-induced events. Thus protein phosphorylation is closely associated with the receptor-mediated stimulation of platelets and is a useful indicator of the signaling process initiated through the receptors. Other synthetic analogs of AGEPC such as rac-3-(N-n-octadecylcarbamoyloxy)-2-methoxypropyl 2-thiazolioethyl phosphate and 1-(N-n-pentadecylcarbamoyloxy)-2-methoxy-rac-glycero-3-phosphochol ine (CV3988 and U68043) were also shown to be inhibitors of the AGEPC-induced protein phosphorylation. Inhibition by these analogs was specific for AGEPC since there was no observed effect of thrombin, ADP, 12-O-tetradecanoyl-phorbol 13-acetate (TPA) and arachidonic acid-induced changes. The extent of inhibition was dependent on the concentration of AGEPC and its analogs and did not change with time after the addition of AGEPC. In platelets incubated with AGEPC analogs before and simultaneously with the addition of AGEPC, protein phosphorylation was prevented; however, addition of AGEPC to platelets shortly before the addition of these analogs showed a high response. In experiments where platelets were previously incubated with AGEPC analogs and washed with buffer containing 0.5% bovine serum albumin, AGEPC-induced protein phosphorylation was recovered to a level of 80%. These observations support the conclusion that AGEPC stimulates platelets through its specific receptor, and that the AGEPC analogs bind to the AGEPC receptor and block that pathway sensitive to AGEPC stimulation but not because of the desensitization of its receptor. On the other hand, in platelets where phosphorylation of the 40-kDa protein was induced by a 2-min preincubation with 3 X 10(-10) M TPA, 5 X 10(-10) M AGEPC-induced serotonin release decreased by 51% compared to a control value.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Regulation of platelet-activating factor receptors in rat Kupffer cells   总被引:1,自引:0,他引:1  
Ligand binding studies indicate that 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine (AGEPC) down-regulates its own receptors on the plasma membrane of isolated rat Kupffer cells but has no significant effect on the binding affinity of the receptor for AGEPC. Exposure of isolated rat Kupffer cells to 10(-8) and 10(-6) M AGEPC resulted in a rapid, time-dependent reduction in the number of cell surface AGEPC receptors to a new steady state concentration (54.1 +/- 5.0% and 38.6 +/- 5.4% of control, respectively). During the observation period (6 h), the half-time of surface AGEPC receptors was about 60 and 45 min in the presence of 10(-8) and 10(-6) M AGEPC, respectively. Both the rate of loss and the maximal loss of the receptors were dependent upon the AGEPC concentration. With receptor synthesis inhibited by cycloheximide in the absence of AGEPC, the half-time of the surface AGEPC receptor was about 4 h, suggesting that AGEPC receptors are not recycled and that the loss of AGEPC receptors from the plasma membrane is accelerated by AGEPC binding. When incubated with Kupffer cells at 37 degrees C for 3 h, 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine (1.0 microM), an inactive metabolite of AGEPC, did not cause the loss of AGEPC receptors. Under the same conditions, AGEPC antagonists such as BN52021 (2 x 10(-5) M) or U66985 (2 x 10(-5) M) alone had no effect (97.0 +/- 3.9% of control for BN52021) or only a relatively slight effect (78.4 +/- 1.8% for U66985) on the number of surface AGEPC receptors. However, AGEPC antagonists inhibited the AGEPC-induced down-regulation of AGEPC receptors in a concentration-dependent manner, suggesting that the AGEPC-induced down-regulation of AGEPC receptors is a receptor-mediated process. The AGEPC-mediated decrease in receptor number on rat Kupffer cells is reversible. Upon removing AGEPC from the culture medium, about 67% of the lost receptors were replaced within 2 h. Cycloheximide, an inhibitor of protein synthesis, prevented the restoration of the AGEPC receptors. Similar results were obtained when Kupffer cells were incubated with Pronase followed by removing Pronase and reincubating the cells with or without cycloheximide. These observations suggest that the restored AGEPC receptor is newly synthesized rather than recycled. The present study demonstrates that under non-stimulatory (i.e. in the absence of AGEPC) conditions AGEPC receptors are lost from the plasma membrane and are reformed in the cells continuously.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The uptake and metabolism of 3H-labeled platelet-activating factor by interstitial and epithelial cells from rat lungs was investigated. The uptake of 1-O-[3H]octadecyl-2-acetyl-sn-glycero-3-phosphocholine (3H-AGEPC) by alveolar type-II cells was linear with time from 5 to 60 min, with an average rate of 660 and 450 fmol/10(6) cells for cells in primary culture for 48 to 72 h, respectively. AGEPC was rapidly metabolized and by 10 min 60% of AGEPC was converted into long-chain acylphosphatidylcholine (PC) (50%) and 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine (lyso-GEPC) (10%). By 60 min radioactivity in AGEPC was less than 10% of the total intracellular activity. Lyso-GEPC remained at about 10% throughout the incubation period. The uptake of 3H-AGEPC by fibroblasts was very similar to type II cells, but the rate of metabolism was slower. AGEPC in fibroblasts constituted 85% of the cellular counts after 10 min of incubation, and 50% by 60 min. After 60 min only 30% of the AGEPC was converted to alkylacyl-PC. Characterization of the fatty acids in the alkylacyl-PC of both the type-II cells and lung fibroblasts indicated that arachidonic acid was preferentially (more than 90%) inserted at the 2-position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号